
Writing a Tango Device in LabVIEW

Introduction
So far, the Tango binding for LabVIEW was a pure client platform. It now allows to turn any LabVIEW application

into a Tango device.

The proposed model is very close to the one offered for any other language (C++, Java or Python). Any developer

with a minimum of LabVIEW and Tango knowledge should be able to implement a simple Tango device in,

literally, a few tens of minutes.

This first release supports most of the Tango 9 features. Regarding the data types, the DevEncoded and Pipe are

currently not supported. They require a particular attention – notably in the choice of the associated data

structures on LabVIEW side. Anyway, the provided features are more than enough to start writing advanced

Tango devices.

Particular attention has been paid to reliability and performances. The data exchanges between the two worlds

are notably based on proved code inherited from the binding client API – which is known to be stable and fast.

Quick Guided Tour

Installing the binary distribution
Whatever is the platform on which you plan to run the Tango binding, the installation is conceptually the same:

1. uncompress the package into the location of your choice. In what follows, we assume that the Tango binding

has been installed into a directory which path is TBFL_ DIR.

2. make sure that the binding runtime – i.e. TBFL_ DIR/lib - is in your “dynamic loader path”. Concretely, you have

to make sure that the full set of Tango DLLs (or shared libraries) is located in a directory listed in your Windows

PATH environment variable or in your Linux LD_LIBRARY_PATH environment variable. In doing so, we ensure that

LabVIEW is able to successfully load the Tango binding.

Note: You can also launch LabVIEW in the required environment by adapting the provided launchers TBFL_

DIR/launcher/[windows, linux]/start-labview.[bat, sh].

Running the provided example
The Tango binding comes with an examples library containing a full-featured Tango device named

SingleDeviceDServer. This VI implements a Tango device server embedding a single instance of the so-called

LabviewTangoTest class. It constitutes a good starting point to discover the main VIs involved into the

implementation of a LabVIEW device.

Registering the device

Open a Jive instance and register the SingleDeviceDServer into the Tango database by loading the provided

property file.

Jive -> File menu -> Load property file then browse your file system and select the following file:

TBFL_DIR/lib/examples/dservers-registration/LabviewSingleDeviceDServer.tdb

You should obtain the following entry in the Tango database:

Specifying the path to the POGO “.xmi” file:

The LabVIEW binding will dynamically instantiate the Tango device and populate its interface according to the

content of the xmi file of its Tango class. This xmi file is nothing but the xml file generated by POGO which

describes the full device interface in terms of properties, commands, attributes, states, etc.

For each class we want to run in a LabVIEW device server, we consequently have to specify the path to the

associated xmi file in order to allow the Tango binding to instantiate the corresponding devices. This information

is passed to the binding using a specific and mandatory class property named PathToPogoXmiFile.

In order to change its value, click on the Class tab of Jive panel, select the LabviewTangoTest class then change

the PathToPogoXmiFile property according to your local installation: TBFL_DIR/examples/xmi/

LabviewTangoTest.xmi

Good news, your LabVIEW device is now ready to run!

Launching LabVIEW

Launch LabVIEW from any “Tango binding aware” environment - i.e. from any environment from which the

dynamic loader can find the required DLLs or shared libraries. In case you adapted the provided launcher, it’s the

right time to use it.

Open the SingleDeviceDServer VI

From LabVIEW, browse your file system and open the examples library: TBFL_DIR/examples/examples.lvlib.

Open the SingleDeviceDServer VI then start it using the LabVIEW run button.

If everything is fine you should obtain something like:

Playing with the device

The easiest way to test the device is to open an ATKPanel from Jive by double-clicking on its device name.

Navigating in the device interface, you will notice that it has an “echo like” command and a read/write attribute

for each supported data type (Jive only shows the ones it can display).

The binding also comes with a set of unit tests you can use to test the device and evaluate its performances and

stability. Don’t hesitate to launch a couple of them in order to estimate the responsiveness of the device under

heavy load (e.g. play with the devDoubleScalar knob while the device is responding to client requests). Launching

the ClientForSingleDeviceDServer_[03,04].vi generates something like 1000 requests/s on a i7 laptop.

Implementation details

Main VIs

The implementation scheme of a LabVIEW device is really simple. Basically, all you need to do is to start the

device server, to reply to client requests and, eventually, to quit one day or another.

In what follows, we illustrate the “single device device-server” case and assume that the associated xmi file has

already been generated from POGO and properly registered in the Tango database - remember the

PathToPogoXmiFile class property?

The device implementation starts with a call to the _DServerStart.vi. As its name indicates, this VI starts the

Tango device server which executable and instance names are specified as input parameters. This simple call

does a lot in fact - there’s a lot of magic behind it. Let’s say that once it return all the devices belonging to device-

server are up and running. They will simply do nothing until you start to handle the incoming client requests.

The dserver evt. terminal of the _DServerStart.vi is then injected into the _DServerEventHandler.vi which is itself

running into an infinite while loop. The _DServerEventHandler.vi is the unique entry point of any client request.

A client request is primarily identified by its type: EXEC_CMD, READ_ATTR or WRITE_ATTR. It also contains the

device name and the name of the command or attribute to which it applies. Using case structures, it then

becomes straightforward to identify and reply to client requests:

As we can see, client requests handling is basically based on 3 imbricated case structures. The first one is related

to _DServerEventHandler.vi timeout. Here we choose to do nothing in case the timeout of the underlying event

handler expires (i.e. no idle activity here). In case we get a valid request for the event handler, we unbundle it to

access both the request type and the command or attribute name - which constitute respectively the second and

third level of the client request handling. Can’t be simpler…

At the right end of the block diagram, we find a call to the _DServerStop.vi. This VI stops the Tango device(s)

activity and does the necessary cleanup.

Note: the Tango binding smoothly supports “brutal interruption” through the LabVIEW abort button. One can

abort the device(s) activity, change his/her implementation then restart the application using the start button.

In fact, whatever is the way the device-server is aborted on LabVIEW side, the devices will actually still be running

on the C++ side. Incoming requests will be simply trashed and an exception will be thrown to the client. This

behavior is imposed by the Tango kernel itself. The main consequence is that, during the development stage of

our application, we will have to quit/restart LabVIEW in case we want to start another device-server.

Trying to start a device-server while another one is already running will generate the following error:

Don’t be confused. Running several devices into the same device-server is supported – see the

examples.lvlib::MultiDeviceDServer.vi for an example. What is not supported is running two device-servers into

the same LabVIEW session (or application). This is also a Tango kernel constraint inherited from the C++

implementation – i.e. running two device-servers into the same process is not supported (which clearly makes

sense).

Replying to client requests

Every client request is handled at C++ level by a dedicated thread. This thread forwards the incoming request by

posting a user-event to the LabVIEW side of the device implementation. It then waits for a reply or, at least, an

acknowledgment. In case the LabVIEW implementation takes too long to reply, the predefined timeout will expire

and an error will be returned to the client. In such a case, the late reply or acknowledgement coming from

LabVIEW will be silently trashed by the binding (can’t do anything else in fact).

It’s important to note that the thread handling a given request will block while waiting for the reply and will

prevent any other request from being handled (due the Tango serialization model). We consequently understand

that it’s a good idea to always reply to a client request in order to avoid blocking the device for several seconds

each time an “unhandled request” is received.

The default timeout value is 3 seconds. This value can be changed at class or device level using dedicated VIs:

_DServerSetClassTimeoutInSec.vi and _DServerSetDeviceTimeoutInSec.vi.

Specific VIs are provided for valid requests acknowledgement and unimplemented (i.e. not supported) requests.

See the DevVoid and default cases of the EXEC_CMD case structure for an example.

Replying to a command execution request

In case of a command execution request, the input argument (argin) is delivered with the request. Unless, the

argin data type is DevVoid, the polymorphic _DServerGetCommandArgin.vi is used to access the associated data.

Symmetrically, unless the output argument (argout) of the command is DevVoid, the polymorphic

_DServerSetCommandArgout.vi will be used to send the reply to the client. In case the argout data is DevVoid, we

will simply acknowledge the request using the _DServerRequestAcknowledgement.vi.

Here is the implementation of the DevLong/DevLong echo like command of our example device:

The DevVoid/DevVoid case is even simpler:

Please note that, whatever is the request type, the _DServerRequestAcknowledgement.vi can be used to send an

error to the client - e.g. invalid argument, value out of range, etc.

Replying to a write attribute request

Replying to a “write attribute” request is a two stages process. The attribute value (i.e. the setpoint) is first

extracted using the polymorphic _DServerGetAttributeValue.vi. Then, the request is acknowledged (or rejected)

using the _DServerRequestAcknowledgement.vi.

Here is the implementation of the “write devStringImage” case of our example. The setpoint is extracted in the

expected format then pushed into a global variable named stri. In parallel, we also acknowledge the request.

"

Note: in real life application, it would have been a good idea to validate the extracted attribute value before

acknowledging the request.

Replying to a read attribute request

Here, the game is simple: we have to provide the current value of the requested attribute. Whatever is the way

we store our data in the LabVIEW application (global, queue, …), the idea is to push it into the polymorphic

_DServerSetAttributeValue.vi specifying the associated attribute data type (the system can’t guess it).

Here is the “read devStringImage” case of our example device. In this example, we choose to return the last

written value or a random one in case the attribute as never been written. Here again, we could return an error to

the client - e.g. hardware in fault, no data available, etc. - using the _DServerRequestAcknowledgement.vi.

Accessing device property

A dedicated VI is provided to access a device property, the _DServerGetDeviceProperty.vi.

Device properties are usually read upon reception of an “Init” command request. Here is an example:

About the device state machine

The Tango binding provides a default implementation of the state machine you define in POGO. The idea is to

systematically read and check the State attribute of the device before forwarding the request to the LabVIEW

implementation. If the requested action is not allowed for the current device State, it’s aborted and an error is

returned to the client.

In this case you want to handle the State machine yourself, the default behavior can be disabled using the

_DServerDisableStateMachine.vi.

Symmetrically, it can be re-enabled using the _DServerEnableStateMachine.vi.

Device Logging

Finally, logging on behalf of a given tango device is supported. Here is the associated VI:

The logging level is controlled by the tango.lvlib::_LoggingLevel.ctl (typedef) .

The tango.lvlib

The VIs we just described are available from the tango.lvlib. A library which is itself embedded into the tango llb:

TBFL_DIR/vis/tango.llb. Not that this library also contains the Client VIs - which can obviously be used

simultaneously with the Server VIs.

