
 1

Tango kernel status

• News from kernel
• Tango 8

• Attribute properties (Tomasz)
• Event system
• Miscellaneous
• Pogo

 2

Tango 8

•In use at ESRF
• At least for machine control system
• Don't be jealous, it's Tango 8.0.4 !!
• Release available for the community: 8.0.5

 3

List of changes
Tango 8 has been developed and tested using:

- omniORB 4.1.6

- zmq 3.1

- log4tango 4.0.5

Changes between Log4tango 4.0.3 and Log4Tango 4.0.5

- SourceForge bug 3156197

- Fix warnings when Tango is compiled -Wall -Wextra

- Add Windows port for Windows 64 bits VC10

Changes in Tango itself

- New event system based on ZMQ

- New methods to manage polling in DeviceImpl class (is_attribute_polled()/is_command_polled,

get_attribute_poll_period()/get_command_poll_period(), poll_attribute()/poll_command(),

stop_poll_attribute()/stop_poll_command())

- DevEncoded data type supported for commands

- New Attribute class setter/getter methods for min_alarm, max_alarm, min_warning and max_warning attribute
properties

- New Attribute set_properties/get_properties to set/get several attribute properties in one call

- Cleaner way to reset kernel attribute properties to lib/user/class default value

- Add some C++11 features when compiler support them (Lambda functions - unique_ptr for extension classes
-

Move contructor and assignement for DeviceData and DeviceAttribute classes)

This requires a new compilation option (-std=c++0x)

Clic- The DeviceProxy and DeviceAttribute classes copy constructor and assignement operator now really
copy the data

- Add device log messages when any device attribute(s) quality factor changes

(ATTR_INVALID -> error stream, ATTR_CHANGING -> info stream, ATTR_VALID -> info stream

ATTR_ALARM: min/max alarm -> error stream, min/max warning + rds -> warning stream)

- Add a clean_db parameter to the DeviceImpl::remove_attribute() method. Default is true

- New DeviceProxy::get_access_right() method

- New Util::is_svr_starting(), Util::is_svr_shutting_down() and Util::is_device_restarting() methods

- New DeviceClass::get_cmd_by_name() method

- New DServer::_create_cpp_class() method (For PyTango)

- Remove warnings compilation (Tango is now compiled with -Wall and -Wextra)

- Add Group::command_inout(), Group::command_inout_asynch(), Group::write_attribute() and
Group::write_attribute_asynch()

with vector<DeviceData> to carry the data.

- Improvements in event management for notifd events (link to bug 3293671)

- For writable and memorized attribute(s), check coherency of new min/max_value with memorized value when
the

attribute configuration is modified.

- State computation for device with alarmed attributes: If the attribute is polled, the attribute value is

read from the polling buffer (also true when reading the state as a CORBA attribute)

- Add pre-processor define for Tango release number management (TANGO_VERSION_MAJOR,
TANGO_VERSION_MINOR

and TANGO_VERSION_PATCH)

- Host IP address(es) is(are) now retrieved from network interface(s)

- Add a check during set_attribute_config() call for users trying to change hard coded properties

- Optimization in DeviceProxy methods to get asynchronous call replies when caller uses a timeout in case the

reply is already there

- Remove some "cerr" messages in AttributeProxy class

- Uil::get_host_name() always returns host name in lower case letters

- The caller PID is now reported in black-box also when UNIX socket is used as transport

- write_attribute() called during device server startup sequence due to memorized attribute(s) is reported

in black box with a specific message

- It's now possible to poll command/attribute in a device server started without database for
command/attributes

with polling defined in code

- Add a polling thread tuning after the execution of UpdObjPollingPeriod command

- Remove all Solaris specific code

- Remove all old stream specific code

- Signals SIGUSR1 and SIGUSR2 can now be used within a device server process

- Optimize database calls during device server startup and shutdown sequence (When TAC is used or when

dynamic attributes are used)

- Added Database class copy constructor and assignment operator

- Tango is now compiled with Debian hardenning flags on.k to add text

 4

List of changes (bug fixes)

Bug fixes

Bug recorded in sourceForge:

- 3129849 : TANGO_HOST case sensitive for some event usage

- 3151801 : Missing some attribute properties in UserDefaultAttrProp class

- 3165120 : Yet another type in doc

- 3206916 : Another type in doc

- 3213730 : Device server add wrong ',0' in attribute abs_change property

- 3259442 : Macos compilation on x86

- 3267364 : Typo in documentation

- 3277453 : Database class and Tango Access Control

- 3280851 : Wrong state computation

- 3285370 : Printing operator for DeviceData class

- 3285372 : Wrong lock removal of last locked device from a locking thread (Windows specific)

- 3285674 : NaN in write_attribute() call (With a control system prop. to allow/disallow NaN)

- 3313211 : Polling threads pool management

- 3399975 : ULong data type and memorized writable attribute

- 3400550 : State computation with alarmed attributes

- 3413944 : Memorized attribute written at init

- 3460080 : Device server crash during event reconnection (event between devices within the same DS)

- 3468928 : Does not compile with gcc 3.3

- 3480524 : Write attribute (SCALAR) when throwing exception

- 3495592 : Logging directory

- 3505226 : Tango misses ORB parameters

Other bugs

- When user pushes event, pushes first event when it is inited (when the event detection is done by the lib)

- In case of consecutive signal installations and removals.

- Bug in error message and in inserters in DbDatum class for unsigned char data type

- Bug when updating database due to one attribute configuration change

- Bug when using the WAttribute::set_min_value() methods family: The attribute was not flagged as attribute with

minimun value defined

- Doc: Fix bug in Database::get_device_attribute_property() method usage example

- Bug in WAttribute::set_min_value() and Wattribute::set_max_value() methods for unsigned char data type.

The data was stored in database as ascii characters

- Device server crashes when you kill it if there are some long running actions when the signal is received.

- It's now possible to define in code that state and status has to be polled

- It's now possible to define an archive event period or a periodic event period for state or status attributes

- Possible device server process crash (depending how you are lucky) when trying to start one with an

instance name not defined in database

- Bug when reading attribute from CACHE when the attribute is not polled. The returned exception was not correct

- Wrong printed date (and reported in blackbox) when used on 64 bits computer to add text

 5

Compatibility - Compilation

• Major release
• Recompile all objects files belonging to the same process
• Network compatible

• Compilation
• Use ZMQ library

• ZMQ include files
• -lzmq in linker command line

• Use some C++11 features when available (gcc >= 4.3 or VC10)
• -std=c++0x in compiler command line
• Makefile generated by Pogo manage this

 6

Mutable attribute properties

• Their value can be modified by users
• 20 properties concerned:

• not concerned: eg. name, data_type, data_format, max_x, max_y

label
description
unit
standard_unit
display_unit
format

min_value
max_value
min_alarm
max_alarm
min_warning
max_warning
delta_val

abs_change
rel_change
arch_abs_change
arch_rel_change

period
archive_period
delta_t

string attribute's type DevDouble DevLong

 7

What has changed?

• setting / getting properties
• new setters and getters on the server side
• set / get all mutable properties in one go on the server side
• validity checks

• setting user default values
• restoration of default values
• database optimization
• attribute construction exception handling
• templates

 8

Set / get properties on the server side

• set / get all mutable properties in one go
• same functionality as the network call: set_attribute_config()

1. get attribute configuration
2. modify some properties
3. set attribute configuration

• overloaded methods
Attribute::set_properties() and Attribute::get_properties()

• new template class MultiAttrProp<T> as a properties' values carrier
• properties' values can be provided as strings or numerical data

• performs validity checks
• eg. min_value < (?) max_value
• delta_val = “123abc”

• rollback mechanism

 9

Set / get properties on the server side
example

network call:

DeviceProxy device = new DeviceProxy(“DevName”);

AttributeInfo ai;
ai = device->get_attribute_config(“AttName”);

ai.min_alarm = "1.2";

AttributeInfoList ai_list;
ai_list.push_back(ai);
device->set_attribute_config(ai_list);

server side:

MultiAttribute *attributes = this->get_device_attr();
Attribute &attr = attributes->get_attr_by_name("AttrName");

MultiAttrProp<DevDouble> multi_prop;
attr.get_properties(multi_prop);

DevDouble alarm_val = 1.2;
multi_prop.min_alarm = alarm_val;
// or multi_prop.min_alarm = “1.2”;

attr.set_properties(multi_prop);

ge
t p

ro
pe

rti
es

ge
t d

ev
 /

at
tr

se
t v

al
ue

se
t p

ro
pe

rti
es

 10

Set / get properties on the server side

• new set / get template methods:

• Attribute::set_min_alarm(T &) & Attribute::get_min_alarm(T &)
• Attribute::set_max_alarm(T &) & Attribute::get_max_alarm(T &)
• Attribute::set_min_warning(T &) & Attribute::get_min_warning(T &)
• Attribute::set_max_warning(T &) & Attribute::get_max_warning(T &)

• accept both string and numerical values
• validity checks are performed

 11

Reset attribute properties to default values

• 3 levels of default values:
• library defaults
• user defined defaults
• class level defaults

• keywords:
• “Not specified” - unconditionally restore library defaults
• “” (empty string) – restore user defaults, if not defined bring

library defaults
• “NaN” - restore class defaults, if not defined bring user defaults,

if no user defaults defined, reset to library defaults

priority

 12

Reset attribute properties to default values
example

class defaults user defaults library defaults

“Not specified”

“” (empty string)

“NaN”

 13

Attribute constructor exception handling

• in Tango 8 attribute properties validity has been reinforced
• min_alarm < max_alarm (etc.)
• no letters if numerical value expected
• RDS alarm properly defined (both delta_t & delta_val set)

• exception may occur at the device server startup if forbidden
property values are stored in the database

• all raised exceptions are stored locally
• reading & writing a value of the attribute is refused

• exceptions list is thrown
• users must modify the corrupted properties
• if configuration valid – allow read & write

 14

read StepMotorPosition

exception! min_alarm > max_alarm; period NaN

Attribute constructor exception handling
example

User DS DB
StepMotorPosition:

min_alarm 2
max_alarm 0
period 123abc
value 3

min_alarm 2
max_alarm 5
period 123abc
value 3

min_alarm 2
max_alarm 5
period 1000
value 3

set max_alarm = 5
set max_alarm = 5

read StepMotorPosition

exception! period NaN

set period = 1000
set period = 1000

read StepMotorPosition

StepMotorPosition = 3

 15

New event system (part 1 – Everything is fine)

 16

New event system

• Tango user point of view
• No change at all in method calls (both on client and server side)
• Filters not available any more (no answer on mailing list –

29/06/2011)
• New DeviceProxy::subscribe_event() methods family without this

parameter
• The old ones still work

• Tango CS administrator
• Notifd not needed any more

• IF both client AND server use Tango 8

• Tango kernel
• Many changes!

 17

ZMQ

• A layer to build distributed system
• Between threads within a process
• Between processes within a host
• Between hosts

• Supports several communication patterns
• Request/Reply, Publish/Subscribe, Push/Pull,...

• Only takes care of transporting data
• No encoding provided

• Written in C but many bindings available
• C++, Java, Python, Erlang, Ruby,...

 18

The basics

• Two main points
• 1 - Use Publish / Subscribe pattern

• The publisher is the DS
• The subscribers are the applications

• 2 – Use CORBA CDR (marshalling - unmarshalling) to encode /
decode data

• Same structures than those defined in the CORBA IDL Tango file

 19

Transported data

• Use ZMQ Multipart message
• On the wire, one event is a 4 parts message:

• Part 1: The event FQDN (string – lower case)
• tango://kidiboo:10000/et/test/01/current.change

• Part 2: The endianess (One byte)
• 0 = big endian, 1 = small endian

• Part 3: Object selection (structure – Encoded using CORBA CDR)
• Method name (string – lower case) – Not used yet
• Global object identifier (bytes sequence) – Not used yet
• Version
• Counter
• Exception flag

 20

Transported data

• Part 4 – Event data (structure – Encoded using CORBA CDR)
• Use structure defined in Tango IDL

Endianess

Method name
Global OID
Version
Counter
error

Event dataEvent name

 21

Publisher / Application side event filtering

• How many ZMQ publisher sockets per DS (Splitting events
on publishers) ?

• 1 per DS → All events for all DS devices sent to the application!!
• ZMQ layer in the application will do the filtering

• 1 per device and event type → Many publishers (3 fd / publisher)
• No filtering needed on applications

• 4 publishers / device
• 1 pub/change + 1 pub/archive + 1 pub/periodic
• 1 pub/remaining event (att conf change, data ready, user) → Some

filtering needed
• 1 specific publisher for heartbeat event
• Example:

• 1 DS with 20 devices → 81 (1 + 4*20) publishers (243 fd)

 22

Publisher / Application side event filtering

• ZMQ release 3 offers “subscription forwarding”
• ZMQ filtering done on the first X bytes of the transported data
• Filtering done on the publisher side (DS side)

• Using ZMQ 3
• 2 publishers:

• 1 dedicated to the DS heartbeat event
• 1 dedicated to all events for all devices embedded in the DS

 23

Establishing event connection

• Subscriber (appli) needs the publisher (DS) host IP address
and the selected port number (the ZMQ endpoint)

• A new DS admin device cmd:
ZMQEventSubscriptionChange

• Same inputs than the actual EventSubscriptionChange cmd
• Event name

• Out = DevVarLongStringArray data type
• Out string[0] = DS heartbeat ZMQ publisher endpoint
• Out string[1] = Event ZMQ publisher endpoint
• Out long[0] = Tango lib release number
• Out long[1] = Device IDL release

• No need to store the endpoint in database
• This feature is not available for ZMQ event

 24

Event Compatibility

• Both event systems (notifd / ZMQ) in Tango 8

• Case 1
• Appli uses admin device EventSubscriptionChange cmd → Old appli →

Use notifd
• Case 2

• Appli uses admin device ZMQEventSubscriptionChange cmd → Exception
→ appli uses EventSubscriptionChange → Server uses notifd

• ** : Only if device(s) inherit from Device_4Impl. Otherwise, notifd

Device Server
Tango 7 Tango 8

Appli
Tango 7 OK (notifd) Case 1 (notifd)
Tango 8 Case 2 (notifd) OK (ZMQ) **

 25

Events and threads

• A Tango 8 DS has at least 8 threads
• Main thread
• 3 ORB's threads
• Signal thread
• Heartbeat thread
• 2 ZMQs threads
• X > 0 threads for polling thread pool
• Y > 0 threads for requests service

 26

Events and threads

• A Tango 8 client using events has at least 6 threads
• Main thread
• One ORB thread
• 2 ZMQs thread
• 2 Tango event system threads (KeepAlive and EventConsumer)

• Callback execution on client side is single-threaded
• Could be changed if required (thread pool)

 27

Performances

• Device server
• Core 2 Duo 2.66 Ghz – 4 GB ram – 100 Mbit/sec – Ubuntu 11.10

• Client
• P4 2.4 Ghz – 1.5 GB ram – 100 Mbit/sec – Ubuntu 10.10

1 DevLong 1 K DevLong
Tango 7 Tango 8 Tango 7 Tango 8

1 770 25000 650 2100
2 770 13000 460 1200
5 400 5400 200 540

10 220 2700 100 270

 28

New Event system – Part 2: Weather turns bad...

 29

Events and multicasting

• ZMQ implement pub/sub with multicasting using OpenPGM
• Implementation of the PGM protocol

• Compile ZMQ with the “--with-pgm” option
• Multicasting is more tricky to set-up due to buffer tuning

and rate limited protocol (PGM)
• Not used in Tango 8: Unicast is the default

• Tango 8.1 will add multicasting
• A CtrlSystem property will allow the CS administrator to define

• which event(s) has to be propagated using multicast
• using which multicast group

 30

Events and HWM

• HWM = ZMQ buffers High Water Mark
• Max number of events in the ZMQ buffer
• When full, ZMQ discards event without reporting errors

CallbackBuffer

Buffer

Buffer

Buffer

Buffer

Buffer

ZMQ ZMQ

TCP

TCP

TCP

Callback

Callback

Appli

Appli

Appli

 Event
system

Device server

 31

Events and HWM

• Library set a default value of 1000 for both servers/clients
• Control system properties belonging to the CtrlSystem free

object
• DSEventBufferHwm
• EventBufferHwm

• At client or device server level using library calls
• Util::set_ds_event_buffer_hwm()
• ApiUtil::set_event_buffer_hwm()

• Using environment variables
• TANGO_DS_EVENT_BUFFER_HWM
• TANGO_EVENT_BUFFER_HWM

 32

Events and HWM

• ZMQ drops events:
• Event counter in the third part of the event data transferred on the

wire
• If missing event(s)

• Callback called with error flag set

 33

New event system – Part 3: Things turn bad

 34

ZMQ ?
• ZMQ 3 selected in June 2011

• Still not the “stable release”
• Still have 3 bugs not solved “Critical issues”

• First-part of multipart message lost
• Loosing multi-part message when using OpenPGM
• HWM management on publisher side

• ZMQ 3 not wire compatible with ZMQ 2
• Java bindings not available for 3.1 because unstable!

• ZMQ events between C++ processes
• TangORB developed for ZMQ with a ZMQ 2 test device server

• Tango 8 at ESRF only uses events between C++ processes
• DS and archiving systems (500 attributes stored using ZMQ)
• Events between device servers

 35

ZMQ or Crossroads-io ?

• Main ZMQ developers have forked ZMQ
• Crossroads-io (http://www.crossroads.io/)
• Implement new features (socket disconnection)
• Wire compatible with ZMQ 2 (not ZMQ 3) !
• Today it is still release 1.1 (brand new)
• Community much smaller than ZMQ but more active

• Too early to move to Crossroads-io but it's something
which has to be followed and which may happen!

• Compatibility problems !!

http://www.crossroads.io/

 36

Future ?

• It's not that bad. Several possible ways to deal with this
situation thanks to the event system re-factoring done in
Tango 8

• ZMQ progress well
• Continue to use it

• Crossroads-io is more sexy in several months
• Move to crossroads-io

• With or without compatibility with processes using ZMQ
• We are doing this kind of compatibility between ZMQ and notifd events

• Should not be too difficult

• Both of them disappears !!
• Replace the Event transport layer by Tango group

• We will never return to the use of external process like
notifd

 37

Miscellaneous new features

• Polling in Tango class:
• New set of methods in DeviceImpl class to manage polling in your

Tango class code
• is_attribute_polled(), is_command_polled(),

get_attribute_poll_period(), get_command_poll_period(),
poll_attribute(), poll_command(), stop_poll_attribute(),
stop_poll_command()

• C++11 (When available):
• Move constructor and assignment operator for DeviceData and

DeviceAttribute classes
• Copy constructor and assignment operator really copy the data

 38

Some bug fixes

• SF bug 3285674: NaN in write_attribute()
• A new control system property to allow/disallow NaN

• CtrlSystem/WAttrNaNAllowed
• Disable by default

• SF bug 3399975: Memorized attributes
• All data types supported

• State and Status polling can be defined in code (Pogo) like
any other attributes

• Now possible to define archive or periodic event period for
State and Status

 39

Distributions

• Will be Tango 8.0.5
• Update of all included packages

• Database server AND its stored procedure (Release 1.8 - Update it
as well)

• Jive, Pogo, Astor
• ATK
• …

• Windows
• Win32 / VC9
• Win64 / VC10

• Debian (Fred)
• What about ZMQ 3.1 ?

 40

Pogo

• Support Tango 8
• State/status with polling period in code
• All attribute properties are now managed
• Better Tango class inheritance using Tango 8 new methods

(Util::is_svr_starting(), Util::is_device_restarting())

 41

Pogo
• Support dynamic attributes (ESRF way)

 42

Pogo

• Support
dynamic
attributes
(ESRF way)

 43

Java device server (From Gwenaelle - Soleil)

• Work done by Soleil
• A beta release will soon be available

• Without event
• Downloadable from the pink site, documentation will also be

available on the pink site
• Acceptance test: The C++ Tango test suite should work on a Java

device server (except event part)
• Well advanced

• Event will be added by ESRF when Java binding for ZMQ 3 will be
ready

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

