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Tango kernel status

• News from kernel
• Tango 8

• Attribute properties (Tomasz)
• Event system
• Miscellaneous
• Pogo
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Tango 8

•In use at ESRF
• At least for machine control system
• Don't be jealous, it's Tango 8.0.4 !!
• Release available for the community: 8.0.5
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List of changes
Tango 8 has been developed and tested using:

- omniORB 4.1.6

- zmq 3.1

- log4tango 4.0.5

Changes between Log4tango 4.0.3 and Log4Tango 4.0.5

---------------------------------------------------

- SourceForge bug 3156197

- Fix warnings when Tango is compiled -Wall -Wextra

- Add Windows port for Windows 64 bits VC10

Changes in Tango itself

-----------------------

- New event system based on ZMQ

- New methods to manage polling in DeviceImpl class (is_attribute_polled()/is_command_polled,

get_attribute_poll_period()/get_command_poll_period(), poll_attribute()/poll_command(),

stop_poll_attribute()/stop_poll_command())

- DevEncoded data type supported for commands

- New Attribute class setter/getter methods for min_alarm, max_alarm, min_warning and max_warning attribute 
properties

- New Attribute set_properties/get_properties to set/get several attribute properties in one call

- Cleaner way to reset kernel attribute properties to lib/user/class default value

- Add some C++11 features when compiler support them (Lambda functions - unique_ptr for extension classes 
-

Move contructor and assignement for DeviceData and DeviceAttribute classes)

This requires a new compilation option (-std=c++0x)

Clic- The DeviceProxy and DeviceAttribute classes copy constructor and assignement operator now really 
copy the data

- Add device log messages when any device attribute(s) quality factor changes

(ATTR_INVALID -> error stream, ATTR_CHANGING -> info stream, ATTR_VALID -> info stream

ATTR_ALARM: min/max alarm -> error stream, min/max warning + rds -> warning stream)

- Add a clean_db parameter to the DeviceImpl::remove_attribute() method. Default is true

- New DeviceProxy::get_access_right() method

- New Util::is_svr_starting(), Util::is_svr_shutting_down() and Util::is_device_restarting() methods

- New DeviceClass::get_cmd_by_name() method

- New DServer::_create_cpp_class() method (For PyTango)

- Remove warnings compilation (Tango is now compiled with -Wall and -Wextra)

- Add Group::command_inout(), Group::command_inout_asynch(), Group::write_attribute() and 
Group::write_attribute_asynch()

with vector<DeviceData> to carry the data.

- Improvements in event management for notifd events (link to bug 3293671)

- For writable and memorized attribute(s), check coherency of new min/max_value with memorized value when 
the

attribute configuration is modified.

- State computation for device with alarmed attributes: If the attribute is polled, the attribute value is

read from the polling buffer (also true when reading the state as a CORBA attribute)

- Add pre-processor define for Tango release number management (TANGO_VERSION_MAJOR, 
TANGO_VERSION_MINOR

and TANGO_VERSION_PATCH)

- Host IP address(es) is(are) now retrieved from network interface(s)

- Add a check during set_attribute_config() call for users trying to change hard coded properties

- Optimization in DeviceProxy methods to get asynchronous call replies when caller uses a timeout in case the

reply is already there

- Remove some "cerr" messages in AttributeProxy class

- Uil::get_host_name() always returns host name in lower case letters

- The caller PID is now reported in black-box also when UNIX socket is used as transport

- write_attribute() called during device server startup sequence due to memorized attribute(s) is reported 

in black box with a specific message

- It's now possible to poll command/attribute in a device server started without database for 
command/attributes

with polling defined in code

- Add a polling thread tuning after the execution of UpdObjPollingPeriod command

- Remove all Solaris specific code

- Remove all old stream specific code

- Signals SIGUSR1 and SIGUSR2 can now be used within a device server process

- Optimize database calls during device server startup and shutdown sequence (When TAC is used or when

dynamic attributes are used)

- Added Database class copy constructor and assignment operator

- Tango is now compiled with Debian hardenning flags on.k to add text
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List of changes (bug fixes)

Bug fixes

---------

Bug recorded in sourceForge:

- 3129849 : TANGO_HOST case sensitive for some event usage

- 3151801 : Missing some attribute properties in UserDefaultAttrProp class

- 3165120 : Yet another type in doc

- 3206916 : Another type in doc

- 3213730 : Device server add wrong ',0' in attribute abs_change property

- 3259442 : Macos compilation on x86

- 3267364 : Typo in documentation

- 3277453 : Database class and Tango Access Control

- 3280851 : Wrong state computation

- 3285370 : Printing operator for DeviceData class

- 3285372 : Wrong lock removal of last locked device from a locking thread (Windows specific)

- 3285674 : NaN in write_attribute() call (With a control system prop. to allow/disallow NaN)

- 3313211 : Polling threads pool management

- 3399975 : ULong data type and memorized writable attribute

- 3400550 : State computation with alarmed attributes

- 3413944 : Memorized attribute written at init

- 3460080 : Device server crash during event reconnection (event between devices within the same DS)

- 3468928 : Does not compile with gcc 3.3

- 3480524 : Write attribute (SCALAR) when throwing exception

- 3495592 : Logging directory

- 3505226 : Tango misses ORB parameters

Other bugs

- When user pushes event, pushes first event when it is inited (when the event detection is done by the lib)

- In case of consecutive signal installations and removals.

- Bug in error message and in inserters in DbDatum class for unsigned char data type

- Bug when updating database due to one attribute configuration change

- Bug when using the WAttribute::set_min_value() methods family: The attribute was not flagged as attribute with 

minimun value defined

- Doc: Fix bug in Database::get_device_attribute_property() method usage example

- Bug in WAttribute::set_min_value() and Wattribute::set_max_value() methods for unsigned char data type.

The data was stored in database as ascii characters

- Device server crashes when you kill it if there are some long running actions when the signal is received.

- It's now possible to define in code that state and status has to be polled

- It's now possible to define an archive event period or a periodic event period for state or status attributes

- Possible device server process crash (depending how you are lucky) when trying to start one with an

instance name not defined in database

- Bug when reading attribute from CACHE when the attribute is not polled. The returned exception was not correct

- Wrong printed date (and reported in blackbox) when used on 64 bits computer to add text
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Compatibility - Compilation

• Major release
• Recompile all objects files belonging to the same process
• Network compatible

• Compilation
• Use ZMQ library

• ZMQ include files
• -lzmq in linker command line

• Use some C++11 features when available (gcc >= 4.3 or VC10)
• -std=c++0x in compiler command line
• Makefile generated by Pogo manage this
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Mutable attribute properties

• Their value can be modified by users
• 20 properties concerned:

• not concerned: eg. name, data_type, data_format, max_x, max_y

label
description
unit
standard_unit
display_unit
format

min_value 
max_value
min_alarm 
max_alarm
min_warning 
max_warning
delta_val

abs_change
rel_change
arch_abs_change
arch_rel_change

period
archive_period
delta_t

string attribute's type DevDouble DevLong
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What has changed?

• setting / getting properties
• new setters and getters on the server side
• set / get all mutable properties in one go on the server side
• validity checks

• setting user default values
• restoration of default values
• database optimization
• attribute construction exception handling
• templates
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Set / get properties on the server side

• set / get all mutable properties in one go
• same functionality as the network call: set_attribute_config()

1.  get attribute configuration
2.  modify some properties
3.  set attribute configuration

• overloaded methods
Attribute::set_properties() and Attribute::get_properties()

• new template class MultiAttrProp<T> as a properties' values carrier
• properties' values can be provided as strings or numerical data

• performs validity checks
• eg. min_value < (?) max_value
• delta_val = “123abc”

• rollback mechanism
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Set / get properties on the server side
example

network call:

DeviceProxy device = new DeviceProxy(“DevName”);

AttributeInfo ai;
ai = device->get_attribute_config(“AttName”);

ai.min_alarm = "1.2";

AttributeInfoList ai_list;
ai_list.push_back(ai);
device->set_attribute_config(ai_list);

server side:

MultiAttribute *attributes = this->get_device_attr();
Attribute &attr = attributes->get_attr_by_name("AttrName");

MultiAttrProp<DevDouble> multi_prop;
attr.get_properties(multi_prop);

DevDouble alarm_val = 1.2;
multi_prop.min_alarm = alarm_val;
// or multi_prop.min_alarm = “1.2”;

attr.set_properties(multi_prop);
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Set / get properties on the server side

• new set / get template methods:

• Attribute::set_min_alarm(T &)   &   Attribute::get_min_alarm(T &)
• Attribute::set_max_alarm(T &)   &   Attribute::get_max_alarm(T &)
• Attribute::set_min_warning(T &)  &  Attribute::get_min_warning(T &)
• Attribute::set_max_warning(T &)  &  Attribute::get_max_warning(T &)

• accept both string and numerical values
• validity checks are performed
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Reset attribute properties to default values

• 3 levels of default values:
• library defaults
• user defined defaults
• class level defaults

• keywords:
• “Not specified” - unconditionally restore library defaults
• “” (empty string) – restore user defaults, if not defined bring

library defaults
• “NaN” - restore class defaults, if not defined bring user defaults,

if no user defaults defined, reset to library defaults

priority
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Reset attribute properties to default values 
example

class defaults user defaults library defaults

“Not specified”

“” (empty string)

“NaN”
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Attribute constructor exception handling

• in Tango 8 attribute properties validity has been reinforced
• min_alarm < max_alarm (etc.)
• no letters if numerical value expected
• RDS alarm properly defined (both delta_t & delta_val set)

• exception may occur at the device server startup if forbidden 
property values are stored in the database

• all raised exceptions are stored locally
• reading & writing a value of the attribute is refused

• exceptions list is thrown
• users must modify the corrupted properties
• if configuration valid – allow read & write
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read StepMotorPosition

exception! min_alarm > max_alarm; period NaN

Attribute constructor exception handling 
example

User DS DB
StepMotorPosition:

min_alarm 2
max_alarm 0
period 123abc
value 3

min_alarm 2
max_alarm 5
period 123abc
value 3

min_alarm 2
max_alarm 5
period 1000
value 3

set max_alarm = 5
set max_alarm = 5

read StepMotorPosition

exception! period NaN

set period = 1000
set period = 1000

read StepMotorPosition

StepMotorPosition = 3
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New event system (part 1 – Everything is fine)
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New event system

• Tango user point of view
• No change at all in method calls (both on client and server side)
• Filters not available any more (no answer on mailing list – 

29/06/2011)
• New DeviceProxy::subscribe_event() methods family without this 

parameter
• The old ones still work

• Tango CS administrator
• Notifd not needed any more

• IF both client AND server use Tango 8

• Tango kernel
• Many changes!
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ZMQ

• A layer to build distributed system
• Between threads within a process
• Between processes within a host
• Between hosts

• Supports several communication patterns
• Request/Reply, Publish/Subscribe, Push/Pull,...

• Only takes care of transporting data
• No encoding provided

• Written in C but many bindings available
• C++, Java, Python, Erlang, Ruby,...
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The basics

• Two main points
• 1 - Use Publish / Subscribe pattern

• The publisher is the DS
• The subscribers are the applications

• 2 – Use CORBA CDR (marshalling - unmarshalling) to encode / 
decode data

• Same structures than those defined in the CORBA IDL Tango file
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Transported data

• Use ZMQ Multipart message
• On the wire, one event is a 4 parts message:

• Part 1: The event  FQDN (string – lower case)
• tango://kidiboo:10000/et/test/01/current.change

• Part 2: The endianess (One byte)
• 0 = big endian, 1 = small endian

• Part 3: Object selection (structure – Encoded using CORBA CDR)
• Method name (string – lower case) – Not used yet
• Global object identifier (bytes sequence) – Not used yet
• Version
• Counter
• Exception flag
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Transported data

• Part 4 – Event data (structure – Encoded using CORBA CDR)
• Use structure defined in Tango IDL

Endianess

Method name
Global OID
Version
Counter
error

Event dataEvent name
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Publisher / Application side event filtering

• How many ZMQ publisher sockets per DS (Splitting events 
on publishers) ?

• 1 per DS → All events for all DS devices sent to the application!!
• ZMQ layer in the application will do the filtering

• 1 per device and event type → Many publishers (3 fd / publisher)
• No filtering needed on applications

• 4 publishers / device
• 1 pub/change + 1 pub/archive + 1 pub/periodic
• 1 pub/remaining event (att conf change, data ready, user) → Some 

filtering needed
• 1 specific publisher for heartbeat event
• Example:

• 1 DS with 20 devices → 81 (1 + 4*20) publishers (243 fd)
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Publisher / Application side event filtering

• ZMQ release 3 offers “subscription forwarding”
• ZMQ filtering done on the first X bytes of the transported data
• Filtering done on  the publisher side (DS side)

• Using ZMQ 3
• 2 publishers:

• 1 dedicated to the DS heartbeat event
• 1 dedicated to all events for all devices embedded in the DS
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Establishing event connection

• Subscriber (appli) needs the publisher (DS) host IP address 
and the selected port number (the ZMQ endpoint)

• A new DS admin device cmd: 
ZMQEventSubscriptionChange

• Same inputs than the actual EventSubscriptionChange cmd
• Event name

• Out = DevVarLongStringArray data type
• Out string[0] = DS heartbeat ZMQ publisher endpoint
• Out string[1] = Event ZMQ publisher endpoint
• Out long[0] = Tango lib release number
• Out long[1] = Device IDL release

• No need to store the endpoint in database
• This feature is not available for ZMQ event
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Event Compatibility

• Both event systems (notifd / ZMQ) in Tango 8

• Case 1
• Appli uses admin device EventSubscriptionChange cmd → Old appli → 

Use notifd
• Case 2

• Appli uses admin device ZMQEventSubscriptionChange cmd → Exception 
→ appli uses EventSubscriptionChange → Server uses notifd

• ** : Only if device(s) inherit from Device_4Impl. Otherwise, notifd

Device Server
Tango 7 Tango 8

Appli
Tango 7 OK (notifd) Case 1 (notifd)
Tango 8 Case 2 (notifd) OK (ZMQ) **
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Events and threads

• A Tango 8 DS has at least 8 threads
• Main thread
• 3 ORB's threads
• Signal thread
• Heartbeat thread
• 2 ZMQs threads
• X > 0 threads for polling thread pool
• Y > 0 threads for requests service
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Events and threads

• A Tango 8 client using events has at least 6 threads
• Main thread
• One ORB thread
• 2 ZMQs thread
• 2 Tango event system threads (KeepAlive and EventConsumer)

• Callback execution on client side is single-threaded
• Could be changed if required (thread pool)
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Performances

• Device server
• Core 2 Duo 2.66 Ghz – 4 GB ram – 100 Mbit/sec – Ubuntu 11.10

• Client
• P4 2.4 Ghz – 1.5 GB ram – 100 Mbit/sec – Ubuntu 10.10

1 DevLong 1 K DevLong
Tango 7 Tango 8 Tango 7 Tango 8

1 770 25000 650 2100
2 770 13000 460 1200
5 400 5400 200 540

10 220 2700 100 270
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New Event system – Part 2: Weather turns bad... 
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Events and multicasting

• ZMQ implement pub/sub with multicasting using OpenPGM
• Implementation of the PGM protocol

• Compile ZMQ with the “--with-pgm” option
• Multicasting is more tricky to set-up due to buffer tuning 

and rate limited protocol (PGM)
• Not used in Tango 8: Unicast is the default

• Tango 8.1 will add multicasting
• A CtrlSystem property will allow the CS administrator to define

• which event(s) has to be propagated using multicast 
• using which multicast group
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Events and HWM

• HWM = ZMQ buffers High Water Mark
• Max number of events in the ZMQ buffer
• When full, ZMQ discards event without reporting errors 

CallbackBuffer

Buffer

Buffer

Buffer

Buffer

Buffer

ZMQ ZMQ

TCP

TCP

TCP

Callback

Callback

Appli

Appli

Appli

 Event
system

Device server
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Events and HWM

• Library set a default value of 1000 for both servers/clients
• Control system properties belonging to the CtrlSystem free 

object
• DSEventBufferHwm
• EventBufferHwm

• At client or device server level using library calls
• Util::set_ds_event_buffer_hwm()
• ApiUtil::set_event_buffer_hwm()

• Using environment variables
• TANGO_DS_EVENT_BUFFER_HWM
• TANGO_EVENT_BUFFER_HWM
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Events and HWM

• ZMQ drops events:
• Event counter in the third part of the event data transferred on the 

wire
• If missing event(s)

• Callback called with error flag set
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New event system – Part 3: Things turn bad
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ZMQ ?
• ZMQ 3 selected in June 2011

• Still not the “stable release”
• Still have 3 bugs not solved “Critical issues”

• First-part  of multipart message lost
• Loosing multi-part message when using OpenPGM
• HWM management on publisher side

• ZMQ 3 not wire compatible with ZMQ 2
• Java bindings not available for 3.1 because unstable!

• ZMQ events between C++ processes
• TangORB developed for ZMQ with a ZMQ 2 test device server

• Tango 8 at ESRF only uses events between C++ processes
• DS and archiving systems (500 attributes stored using ZMQ)
• Events between device servers
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ZMQ or Crossroads-io ?

• Main ZMQ developers have forked ZMQ
• Crossroads-io (http://www.crossroads.io/)
• Implement new features (socket disconnection)
• Wire compatible with ZMQ 2 (not ZMQ 3) !
• Today it is still release 1.1 (brand new)
• Community much smaller than ZMQ but more active

• Too early to move to Crossroads-io but it's something 
which has to be followed and which may happen!

• Compatibility problems !!

http://www.crossroads.io/
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Future ?

• It's not that bad. Several possible ways to deal with this 
situation thanks to the event system re-factoring done in 
Tango 8

• ZMQ progress well
• Continue to use it

• Crossroads-io is more sexy in several months
• Move to crossroads-io

• With or without compatibility with processes using ZMQ
• We are doing this kind of compatibility between ZMQ and notifd events

• Should not be too difficult

• Both of them disappears !!
• Replace the Event transport layer by Tango group

• We will never return to the use of external process like 
notifd
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Miscellaneous new features

• Polling in Tango class:
• New set of methods in DeviceImpl class to manage polling in your 

Tango class code
• is_attribute_polled(), is_command_polled(), 

get_attribute_poll_period(), get_command_poll_period(), 
poll_attribute(), poll_command(), stop_poll_attribute(), 
stop_poll_command()

• C++11 (When available):
• Move constructor and assignment operator for DeviceData and 

DeviceAttribute classes
• Copy constructor and assignment operator really copy the data
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Some bug fixes

• SF bug 3285674: NaN in write_attribute()
• A new control system property to allow/disallow NaN

• CtrlSystem/WAttrNaNAllowed
• Disable by default

• SF bug 3399975: Memorized attributes
• All data types supported

• State and Status polling can be defined in code (Pogo) like 
any other attributes

• Now possible to define archive or periodic event period for 
State and Status
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Distributions

• Will be Tango 8.0.5
• Update of all included packages

• Database server AND its stored procedure (Release 1.8 - Update it 
as well)

• Jive, Pogo, Astor
• ATK
• …

• Windows
• Win32 / VC9
• Win64 / VC10

• Debian (Fred)
• What about ZMQ 3.1 ?
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Pogo

• Support Tango 8
• State/status with polling period in code
• All attribute properties are now managed
• Better Tango class inheritance using Tango 8 new methods 

(Util::is_svr_starting(), Util::is_device_restarting())
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Pogo
• Support dynamic attributes (ESRF way)
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Pogo

• Support 
dynamic 
attributes 
(ESRF way)
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Java device server (From Gwenaelle - Soleil)

• Work done by Soleil
• A beta release will soon be available

• Without event
• Downloadable from the pink site, documentation will also be 

available on the pink site
• Acceptance test: The C++ Tango test suite should work on a Java 

device server (except event part)
• Well advanced

• Event will be added by ESRF when Java binding for ZMQ 3 will be 
ready
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