
20/01/2021 Tango event system webinar 1

Tango event system - Agenda

– History

– Basic principles

– On the wire

– ZMQ usage

– Establishing connections

– Threading

– Miscellaneous event related info.
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History

● First implementation in Tango 4 (03/2004)
– Using notifd

● OMG notification service implementation

● Decision to re-write event system in 2010
– Get rid of additional process,….

● Second implementation in Tango 8 (07/2012)
– Using ZeroMQ

– Multicast event propagation added in v 8.1
● Used somewhere ?
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User point of view

● 8 event types
– Change, Periodic, Archive

● Fired by Tango lib or user code

– Attribute configuration change, Device interface 
change

● Fired by Tango lib

– Data ready, Pipe, User
● Fired by user code

● Data transferred within the event depends on 
event type
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User point of view

● Firing event from a DS code
– DeviceImpl::push_xxx_event()

● Client API to receive events:
– DeviceProxy::subscribe_event()

– DeviceProxy::unsubscribe_event()

– Client writes a class inheriting from Tango::CallBack 
and re-defines the CallBack::push_event() method 
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User point of view

● Push / Pull model
– Default is push model

● When the event arrives, Tango pushes it to the user

– Pull model implemented using event buffer in client 
process.

● When the event arrives, it is pushed into the buffer

● The buffer is managed as a round robin buffer

● The client reads the buffer when he wants

– DeviceProxy::subscribe_event() allows user to select 
pull model

– DeviceProxy::get_events() to retrieve events from the 
buffer



20/01/2021 Tango event system webinar 6

Basic principle: Automatic change event firing

● For most of the attribute data types, user has to 
define what is a change
– Ex for a PS device:

● Event sent when generated current change
– Do you want to be informed when current changes from 9.0 to 9.01 A 

(change is 0.01 A) or from 9 to 10 A (change is 1 A) ?

● It is required to regularly read the attribute to 
detect the change
– It’s the Tango polling thread which fires the event

● When fired by library, minimum event period is the polling period
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Basic principle: Behind the scene - Heartbeats

● A client needs to know if the DS which should send the 
event is still alive
– Heartbeat from DS to client

● Every 9 sec (dedicated polling thread)

● A DS needs to know if there are still some clients interested 
in events
– Regular re-subscription from client to DS

● Every 200 sec (KeepAliveThread class)

Device
server

Client

Heartbeat

re-subscription
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Basic principles

● Behind the scene:
– Heartbeat from DS to client(s)

● Yet another event type

– Re-subscription
● Through a DS admin device command

● Late joiner problem
– User callback called during the 

DeviceProxy::subscribe_event() call
● Data from a synchronous attribute read done by library
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ZeroMQ 

● A layer to build distributed system
– Between threads within a process

– Between processes within a host

– Between hosts

● Supports several communication patterns
– Request/Reply, Publish/Subscribe,...

● Only takes care of transporting data
– No encoding provided https://zeromq.org
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On the wire

● Events are transmitted using ZMQ multipart 
message with
– 3 parts for heartbeat event

– 4 parts for other event types

Event name

Endianess

Call info

Event data
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On the wire

● Event name
– Fully qualified event name

● tango://acs.esrf.fr:10000/srmag/ps-qf8/c01-b/state.change

● tango://acs.esrf.fr:10000/dserver/hsmaccess/c01.heartbeat

● Endianess
– A single byte (0 Big endian – 1 Little endian)

● Call info and event data
– Structure with data of different type

● Encoded using the CORBA Common Data Representation (CDR)

● Re-use the omniORB generated marshalling / un-marshalling methods

● Re-use data type defined in the Tango IDL file (structures / sequences / ...)
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On the wire

● Call info
– Structure with

● Version, ctr, method_name, oid, call_is_except
– method_name and oid are today unused

● Event data
– Depend on  the event type

– Use data type defined in Tango idl file
● AttributeValue_X for change, periodic, archive event

● AttributeConfig_X for attribute configuration change event

● AttDataReady for data ready event

● DevIntrChange for device interface change event

● DevPipeData for pipe event 
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ZMQ usage

● Use publish / subscribe communication pattern
– The publisher is the device server

– The subscriber is the application

● We use ZMQ subscription forwarding
– Subscription string is the first part of the multipart 

message: The event name
● tango://acs.esrf.fr:10000/my/funny/dev/state.change

– String compare in pub: warning many traps related to how 
tango host is defined in clients and DS

● Lower / upper case

● Use of network alias name for TANGO_HOST in DS but not in appli(s)

● Use of localhost in TANGO_HOST in DS but not in appli(s)

● CS with several TANGO_HOST (ESRF machine CS with acs:10000 and acs:11000)
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ZMQ subscription

pub

sub1

sub2

aa sub1
sub2

bb sub2

Mess: aa,….

Mess: bb,...

Subscribe to message aa

Subscribe to message aa and bb
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ZMQ usage
● Two kind of data to be transmitted

– Heartbeat using couple PUB / SUB socket

– Events using another couple PUB / SUB socket

● A DS has two PUB sockets
● A client has two SUB sockets

Heart PUB Heart PUBEv PUB Ev PUB

Ev SUB Ev SUBHeart SUB Heart SUB

Device server Device server

ClientClient
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Establishing event connection

● The DS “bind” ZMQ PUB sockets to ephemeral 
port number

● Client has to retrieve the DS host IP and the two 
port numbers
– A new command on the DS admin device: 
ZmqEventSubscriptionChange which returns those 
information (plus other things)

● Try it with “info” as argin
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Event connection and DS startup

● Many objects related to event stored in class 
ZmqEventSupplier

● The DS startup
● Create instance of  the ZmqEventSupplier class

● Start the polling thread dedicated to heartbeat
– Does nothing, just wait

● ZmqEventSupplier ctor:
● Create heartbeat PUB socket

● Bind it to ephemeral port

● Detect host endianess

● Init miscellaneous event related data
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Event connection (DS point of view)

● On reception of the 
ZmqEventSubscriptionChange command
– If not already done

● Ask heartbeat polling thread to fire heartbeat event

● Create event PUB socket

● Bind it to ephemeral port
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Event connection (client point of view)

● Many objects related to event stored in class 
ZmqEventConsumer

● ZMQEventConsumer ctor
– Create the two SUB ZMQ sockets (for heartbeat and 

events)

● Several maps to store event related data
– device_channel_map

● Link device name – adm_device name

– channel_map
● Entry for connected DS (heartbeat)

– event_callback_map
● Entry for subscribed event (with callback ptr)
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Event connection (client point of view)

● What has to be done during 
DeviceProxy::subscribe_event()

● If not already done
– Create instance of ZmqEventConsumer class

● Retrieve DS admin device name

● Build a DeviceProxy to that admin device

● Execute command ZmqEventSubscriptionChange on admin device

● If not already done
– Connect the heartbeat SUB socket to the DS heartbeat PUB socket

● ZMQ subscription with heartbeat event name

● If not already done
– Connect the event SUB socket to the DS event PUB socket

● ZMQ subscription with event name

● Read the attribute

● Execute user callback
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Event system threads

● User callback execution requires a thread
– Thread code in ZmqEventConsumer class

● The ZMQ thread

– A ZMQ socket is not thread safe
● Protect it with a mutex and lock it before accessing the socket (DS code)

● Use a single thread to access it (Client code)

– DeviceProxy::subscribe_event() executed by user 
thread != ZMQ thread

● A need for a mechanism between user thread and ZMQ thread
– Use ZMQ REQ / REP socket

● The ZMQ thread also has a REP socket

● During event subscription / un-subscription, user thread(s) create ZMQ REQ 
socket to ask ZMQ thread to execute control commands
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Event system threads: ZMQ thread

● What it does
● Create the two SUB ZMQ sockets

● Create the REP ZMQ socket

● While true
– Wait for data on those 3 sockets (zmq::poll()) ← blocking call
– If data on heartbeat SUB

● Retrieve in maps data for that DS
● Update last heartbeat date

– Else if data on event SUB
● Retrieve in maps data for that event
● Call user callback(s)

– Else if data on control REQ socket
● Execute control command
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Event system threads

● The ZMQ thread control commands
– Connect heartbeat

– Disconnect heartbeat

– Connect event

– Disconnect event

– Connect mcast event

– Delay event / Release event
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Event system (Tango threads)

sub sub

pub pub

Dedicated polling
thread for heartbeat

mutex

Polling thread(s) – user code pushing event

Network

rep

reqreqreq

User callback(s)

     ZMQ 
Event thread

User threads (subscribe - unsubscribe)

Device Server

Application

- Check heartbeat
- Re-subscribe
- Stateless sub.

KeepAliveThread
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Compatibility

● Tango IDL v4 (Tango 8) and v5 (Tango 9)
– IDL AttributeValue struct changed

● Use case: DS using Tango 9, client 1 using 
Tango 9 and client 2 using Tango 8
– DS: Tango 9 IDL 5 → AttributeValue_5

– Client 1: Tango 9 → Knows AttributeValue_5

– Client 2: Tango 8 → Does not understand 
AttributeValue_5 !!!

– DS has to send the event twice with
● AttributeValue_4 for old clients still using Tango 8

● AttributeValue_5 for new clients using Tango 9
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Compatibility

● IDL release added in the event name transferred 
on network
– tango://acs.esrf.fr:10000/my/beautiful/dev/

state.idl5_change
● For Change / Archive / Periodic events due to IDL AttributeValue_5

● For attribute configuration change events due to IDL AttributeConfig_5

● A new input parameter to the 
ZmqEventSubscriptionChange command
– IDL version used by client
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Re-connection

● In case the DS is stopped
– No more heartbeat event

– Every 10 sec, the client KeepAliveThread detects 
missing heartbeat and

● Try to re-connect to DS admin device

● If successful, re-subscribe the client
– User callback called with fresh event data

● Else
– User callback called with error in DevErrorList argument
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Re-connection

● In case of different event name between client 
and DS
– Every 10 sec, the KeepAliveThread

● Call user callback(s) with error

● Try to re-subscribe including the synchronous read
– Call user callback(s) with data read from synchronous call

– The event system works strangely
● Your callbacks are not executed when they should

– Called twice every 10 sec
● With error
● With sync. read data
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ZMQ HighWaterMark (HWM)

● ZMQ has its own buffer
– If buffer gets fulled, events are silently discarded !

– Buffer size defined by the ZMQ HWM
● Tunable at different levels

– Default value = 1000
– Control system properties
– Tango API: Tango::Util or Tango::ApiUtil classes call
– Using Env Variables

● Some doc about this tuning in
– Developer’s guide / Advanced / Reference part / Control system specific
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ZMQ HighWaterMark (HWM)

● An event counter in the ZMQ Call info part of the 
message transferred on the network
– Client checks that between two consecutive events 

● new_ctr = previous_ctr + 1

– In case new_ctr != previous_ctr + 1
● CallBack(s) fired 2 times:

– 1: With DevErrorList argument with one DevError struct
● Desc field = “Missed some events! Zmq queue has reached 

HWM?”
● Reason field = “API_MissedEvents”

– 2: With event data just received
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On the wire: ZMQ call info

● method_name
– To specify which method has to be executed on 

remote object
● We have only one feature: event system

● object identifier (oid)
– To specify which object has to be called

● We have only one entity (the event system)
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DS admin device

● 2 events related commands
– ZmqEventSubscriptionChange

● For event connection

– EventConfirmSubscription
● For KeepAliveThread for heartbeat from client to DS

● 3 input arguments per event
– Device name
– Attribute name
– Event name
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Some file names

● Client part
– client/zmqeventconsumer.cpp

● The Zmq thread (ZmqEventConsumer class code)

– client/eventkeepalive.cpp
● The KeepAliveThread code

– client/event.cpp
● Event subscription / un-subscription

– client/event.h
● Event related structures used in user API

– client/eventconsumer.h
● Event related structure / class definition

– The maps used to store event related data
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Some file names

● Server part
– server/eventcmds.cpp

● The admin device event related commands code

– server/zmqeventsupplier.cpp and 
server/zmqeventsupplier.h

● The ZmqEventSupplier class code

● Code to push event(s)

– server/eventsupplier.cpp
● Code to decide when events must be pushed
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