
20/01/2021 Tango event system webinar 1

Tango event system - Agenda

– History

– Basic principles

– On the wire

– ZMQ usage

– Establishing connections

– Threading

– Miscellaneous event related info.

20/01/2021 Tango event system webinar 2

History

● First implementation in Tango 4 (03/2004)
– Using notifd

● OMG notification service implementation

● Decision to re-write event system in 2010
– Get rid of additional process,….

● Second implementation in Tango 8 (07/2012)
– Using ZeroMQ

– Multicast event propagation added in v 8.1
● Used somewhere ?

20/01/2021 Tango event system webinar 3

User point of view

● 8 event types
– Change, Periodic, Archive

● Fired by Tango lib or user code

– Attribute configuration change, Device interface
change

● Fired by Tango lib

– Data ready, Pipe, User
● Fired by user code

● Data transferred within the event depends on
event type

20/01/2021 Tango event system webinar 4

User point of view

● Firing event from a DS code
– DeviceImpl::push_xxx_event()

● Client API to receive events:
– DeviceProxy::subscribe_event()

– DeviceProxy::unsubscribe_event()

– Client writes a class inheriting from Tango::CallBack
and re-defines the CallBack::push_event() method

20/01/2021 Tango event system webinar 5

User point of view

● Push / Pull model
– Default is push model

● When the event arrives, Tango pushes it to the user

– Pull model implemented using event buffer in client
process.

● When the event arrives, it is pushed into the buffer

● The buffer is managed as a round robin buffer

● The client reads the buffer when he wants

– DeviceProxy::subscribe_event() allows user to select
pull model

– DeviceProxy::get_events() to retrieve events from the
buffer

20/01/2021 Tango event system webinar 6

Basic principle: Automatic change event firing

● For most of the attribute data types, user has to
define what is a change
– Ex for a PS device:

● Event sent when generated current change
– Do you want to be informed when current changes from 9.0 to 9.01 A

(change is 0.01 A) or from 9 to 10 A (change is 1 A) ?

● It is required to regularly read the attribute to
detect the change
– It’s the Tango polling thread which fires the event

● When fired by library, minimum event period is the polling period

20/01/2021 Tango event system webinar 7

Basic principle: Behind the scene - Heartbeats

● A client needs to know if the DS which should send the
event is still alive
– Heartbeat from DS to client

● Every 9 sec (dedicated polling thread)

● A DS needs to know if there are still some clients interested
in events
– Regular re-subscription from client to DS

● Every 200 sec (KeepAliveThread class)

Device
server

Client

Heartbeat

re-subscription

20/01/2021 Tango event system webinar 8

Basic principles

● Behind the scene:
– Heartbeat from DS to client(s)

● Yet another event type

– Re-subscription
● Through a DS admin device command

● Late joiner problem
– User callback called during the

DeviceProxy::subscribe_event() call
● Data from a synchronous attribute read done by library

20/01/2021 Tango event system webinar 9

ZeroMQ

● A layer to build distributed system
– Between threads within a process

– Between processes within a host

– Between hosts

● Supports several communication patterns
– Request/Reply, Publish/Subscribe,...

● Only takes care of transporting data
– No encoding provided https://zeromq.org

20/01/2021 Tango event system webinar 10

On the wire

● Events are transmitted using ZMQ multipart
message with
– 3 parts for heartbeat event

– 4 parts for other event types

Event name

Endianess

Call info

Event data

20/01/2021 Tango event system webinar 11

On the wire

● Event name
– Fully qualified event name

● tango://acs.esrf.fr:10000/srmag/ps-qf8/c01-b/state.change

● tango://acs.esrf.fr:10000/dserver/hsmaccess/c01.heartbeat

● Endianess
– A single byte (0 Big endian – 1 Little endian)

● Call info and event data
– Structure with data of different type

● Encoded using the CORBA Common Data Representation (CDR)

● Re-use the omniORB generated marshalling / un-marshalling methods

● Re-use data type defined in the Tango IDL file (structures / sequences / ...)

20/01/2021 Tango event system webinar 12

On the wire

● Call info
– Structure with

● Version, ctr, method_name, oid, call_is_except
– method_name and oid are today unused

● Event data
– Depend on the event type

– Use data type defined in Tango idl file
● AttributeValue_X for change, periodic, archive event

● AttributeConfig_X for attribute configuration change event

● AttDataReady for data ready event

● DevIntrChange for device interface change event

● DevPipeData for pipe event

20/01/2021 Tango event system webinar 13

ZMQ usage

● Use publish / subscribe communication pattern
– The publisher is the device server

– The subscriber is the application

● We use ZMQ subscription forwarding
– Subscription string is the first part of the multipart

message: The event name
● tango://acs.esrf.fr:10000/my/funny/dev/state.change

– String compare in pub: warning many traps related to how
tango host is defined in clients and DS

● Lower / upper case

● Use of network alias name for TANGO_HOST in DS but not in appli(s)

● Use of localhost in TANGO_HOST in DS but not in appli(s)

● CS with several TANGO_HOST (ESRF machine CS with acs:10000 and acs:11000)

20/01/2021 Tango event system webinar 14

ZMQ subscription

pub

sub1

sub2

aa sub1
sub2

bb sub2

Mess: aa,….

Mess: bb,...

Subscribe to message aa

Subscribe to message aa and bb

20/01/2021 Tango event system webinar 15

ZMQ usage
● Two kind of data to be transmitted

– Heartbeat using couple PUB / SUB socket

– Events using another couple PUB / SUB socket

● A DS has two PUB sockets
● A client has two SUB sockets

Heart PUB Heart PUBEv PUB Ev PUB

Ev SUB Ev SUBHeart SUB Heart SUB

Device server Device server

ClientClient

20/01/2021 Tango event system webinar 16

Establishing event connection

● The DS “bind” ZMQ PUB sockets to ephemeral
port number

● Client has to retrieve the DS host IP and the two
port numbers
– A new command on the DS admin device:
ZmqEventSubscriptionChange which returns those
information (plus other things)

● Try it with “info” as argin

20/01/2021 Tango event system webinar 17

Event connection and DS startup

● Many objects related to event stored in class
ZmqEventSupplier

● The DS startup
● Create instance of the ZmqEventSupplier class

● Start the polling thread dedicated to heartbeat
– Does nothing, just wait

● ZmqEventSupplier ctor:
● Create heartbeat PUB socket

● Bind it to ephemeral port

● Detect host endianess

● Init miscellaneous event related data

20/01/2021 Tango event system webinar 18

Event connection (DS point of view)

● On reception of the
ZmqEventSubscriptionChange command
– If not already done

● Ask heartbeat polling thread to fire heartbeat event

● Create event PUB socket

● Bind it to ephemeral port

20/01/2021 Tango event system webinar 19

Event connection (client point of view)

● Many objects related to event stored in class
ZmqEventConsumer

● ZMQEventConsumer ctor
– Create the two SUB ZMQ sockets (for heartbeat and

events)

● Several maps to store event related data
– device_channel_map

● Link device name – adm_device name

– channel_map
● Entry for connected DS (heartbeat)

– event_callback_map
● Entry for subscribed event (with callback ptr)

20/01/2021 Tango event system webinar 20

Event connection (client point of view)

● What has to be done during
DeviceProxy::subscribe_event()

● If not already done
– Create instance of ZmqEventConsumer class

● Retrieve DS admin device name

● Build a DeviceProxy to that admin device

● Execute command ZmqEventSubscriptionChange on admin device

● If not already done
– Connect the heartbeat SUB socket to the DS heartbeat PUB socket

● ZMQ subscription with heartbeat event name

● If not already done
– Connect the event SUB socket to the DS event PUB socket

● ZMQ subscription with event name

● Read the attribute

● Execute user callback

20/01/2021 Tango event system webinar 21

Event system threads

● User callback execution requires a thread
– Thread code in ZmqEventConsumer class

● The ZMQ thread

– A ZMQ socket is not thread safe
● Protect it with a mutex and lock it before accessing the socket (DS code)

● Use a single thread to access it (Client code)

– DeviceProxy::subscribe_event() executed by user
thread != ZMQ thread

● A need for a mechanism between user thread and ZMQ thread
– Use ZMQ REQ / REP socket

● The ZMQ thread also has a REP socket

● During event subscription / un-subscription, user thread(s) create ZMQ REQ
socket to ask ZMQ thread to execute control commands

20/01/2021 Tango event system webinar 22

Event system threads: ZMQ thread

● What it does
● Create the two SUB ZMQ sockets

● Create the REP ZMQ socket

● While true
– Wait for data on those 3 sockets (zmq::poll()) ← blocking call
– If data on heartbeat SUB

● Retrieve in maps data for that DS
● Update last heartbeat date

– Else if data on event SUB
● Retrieve in maps data for that event
● Call user callback(s)

– Else if data on control REQ socket
● Execute control command

20/01/2021 Tango event system webinar 23

Event system threads

● The ZMQ thread control commands
– Connect heartbeat

– Disconnect heartbeat

– Connect event

– Disconnect event

– Connect mcast event

– Delay event / Release event

20/01/2021 Tango event system webinar 24

Event system (Tango threads)

sub sub

pub pub

Dedicated polling
thread for heartbeat

mutex

Polling thread(s) – user code pushing event

Network

rep

reqreqreq

User callback(s)

 ZMQ
Event thread

User threads (subscribe - unsubscribe)

Device Server

Application

- Check heartbeat
- Re-subscribe
- Stateless sub.

KeepAliveThread

20/01/2021 Tango event system webinar 25

Compatibility

● Tango IDL v4 (Tango 8) and v5 (Tango 9)
– IDL AttributeValue struct changed

● Use case: DS using Tango 9, client 1 using
Tango 9 and client 2 using Tango 8
– DS: Tango 9 IDL 5 → AttributeValue_5

– Client 1: Tango 9 → Knows AttributeValue_5

– Client 2: Tango 8 → Does not understand
AttributeValue_5 !!!

– DS has to send the event twice with
● AttributeValue_4 for old clients still using Tango 8

● AttributeValue_5 for new clients using Tango 9

20/01/2021 Tango event system webinar 26

Compatibility

● IDL release added in the event name transferred
on network
– tango://acs.esrf.fr:10000/my/beautiful/dev/

state.idl5_change
● For Change / Archive / Periodic events due to IDL AttributeValue_5

● For attribute configuration change events due to IDL AttributeConfig_5

● A new input parameter to the
ZmqEventSubscriptionChange command
– IDL version used by client

20/01/2021 Tango event system webinar 27

Re-connection

● In case the DS is stopped
– No more heartbeat event

– Every 10 sec, the client KeepAliveThread detects
missing heartbeat and

● Try to re-connect to DS admin device

● If successful, re-subscribe the client
– User callback called with fresh event data

● Else
– User callback called with error in DevErrorList argument

20/01/2021 Tango event system webinar 28

Re-connection

● In case of different event name between client
and DS
– Every 10 sec, the KeepAliveThread

● Call user callback(s) with error

● Try to re-subscribe including the synchronous read
– Call user callback(s) with data read from synchronous call

– The event system works strangely
● Your callbacks are not executed when they should

– Called twice every 10 sec
● With error
● With sync. read data

20/01/2021 Tango event system webinar 29

ZMQ HighWaterMark (HWM)

● ZMQ has its own buffer
– If buffer gets fulled, events are silently discarded !

– Buffer size defined by the ZMQ HWM
● Tunable at different levels

– Default value = 1000
– Control system properties
– Tango API: Tango::Util or Tango::ApiUtil classes call
– Using Env Variables

● Some doc about this tuning in
– Developer’s guide / Advanced / Reference part / Control system specific

20/01/2021 Tango event system webinar 30

ZMQ HighWaterMark (HWM)

● An event counter in the ZMQ Call info part of the
message transferred on the network
– Client checks that between two consecutive events

● new_ctr = previous_ctr + 1

– In case new_ctr != previous_ctr + 1
● CallBack(s) fired 2 times:

– 1: With DevErrorList argument with one DevError struct
● Desc field = “Missed some events! Zmq queue has reached

HWM?”
● Reason field = “API_MissedEvents”

– 2: With event data just received

20/01/2021 Tango event system webinar 31

On the wire: ZMQ call info

● method_name
– To specify which method has to be executed on

remote object
● We have only one feature: event system

● object identifier (oid)
– To specify which object has to be called

● We have only one entity (the event system)

20/01/2021 Tango event system webinar 32

DS admin device

● 2 events related commands
– ZmqEventSubscriptionChange

● For event connection

– EventConfirmSubscription
● For KeepAliveThread for heartbeat from client to DS

● 3 input arguments per event
– Device name
– Attribute name
– Event name

20/01/2021 Tango event system webinar 33

Some file names

● Client part
– client/zmqeventconsumer.cpp

● The Zmq thread (ZmqEventConsumer class code)

– client/eventkeepalive.cpp
● The KeepAliveThread code

– client/event.cpp
● Event subscription / un-subscription

– client/event.h
● Event related structures used in user API

– client/eventconsumer.h
● Event related structure / class definition

– The maps used to store event related data

20/01/2021 Tango event system webinar 34

Some file names

● Server part
– server/eventcmds.cpp

● The admin device event related commands code

– server/zmqeventsupplier.cpp and
server/zmqeventsupplier.h

● The ZmqEventSupplier class code

● Code to push event(s)

– server/eventsupplier.cpp
● Code to decide when events must be pushed

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

