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Outline

› CERN CMS brief overview;

› base solution;

› decompostion of anomalies by source.
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Data Quality Management

› the CMS detector is a complex system;

› data sample (lumisection) per each 20 sec.:
› each contains a huge number of events (103 − 104);
› unit of data;

› data requires validation;
› only consistent data be used for analysis.
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Current status

› experts propose high-level features;

› a number of Data Quality experts check distributions against reference ones.
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Problem statement

Can Data Quality Managment be, at least partially, automated?

› assist Data Quality experts:
› label part of the data;
› hints for human experts (where to check).
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Towards automated Data
Quality



Data
› 2010 open data
(http://opendata.cern.ch/collection/CMS-Primary-Datasets);

› data from three streams:
› photons: events with a lot of photons,
› muons: events with a lot of muons,
› minibias: prescaled whole event stream;

› 4 channels (≈ subsystem):
› photons,
› muons,
› particle flows (proto-particles),
› particles from calorimiter.

› normal/anomaluos samples: 2/3 vs. 1/3
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Brute-force approach
Data Quality expert assistance:

› automatically process the most obsvious cases;

› guarantee predefined quality of automatic decisions;

› pass to human expert ambiguous cases.
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Base approach

Rejection Rate = Rejected
Total → min ,

under constrains:

Loss Rate = False Negative
True Positive+ False Negative

= 1 − recall ≤ 𝐿0,

Pollution Rate = False Positive
False Positive+ True Positive

= 1 − precision ≤ 𝑃0,
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Base approach

› while not out of samples:
› train a classifier on available labeled data;
› estimate cuts by cross-validation;
› try to classify new sample;
› if the score is between cuts, then:

› pass the sample to a Data Quality expert;
› extend dataset with the sample and the Data Quality expert label;

› otherwise:
› automatically label the sample.
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Base approach
Results:

› working point:
› Pollution Rate < 5 ⋅ 10−3;
› Loss Rate < 5 ⋅ 10−3;

› ≈ 80% manual labour saved.

Details:

› ≈ 2500 features;

› 26 chunks of data;

› ≈ 1000 samples in each chunk;

› XGBoost as underlying classifier;
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Base approach

Maxim Borisyak, Fedor Ratnikov, Denis Derkach, Andrey Ustyuzhanin 17



Decomposing Anomalies



Motivation

Main goal

Study how anomalies affect individual channels.

Examples.

› What channels are responsible for anomalies?

› If only photons were affected is it possible to save muonic data?

› Which plots should receive more attention from Data Quality experts?
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Supervised approach

1. On features from each channel build a neural network;

2. each channel network returns a score for its channel;

3. connect networks by:
› log. reg.
› min operator (with dropout),
› a sort of fuzzyAND;

4. train network to recover global labels;

5. define estimation of score for each channel as corresponding network output.
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Discussion
Consider set of channels 𝒞, an anomaly 𝐴 affecting channels 𝐶 ⊆ 𝒞.

Assumption 1

Anomaly 𝐴 can be detected independenly from data of any channel from 𝐶 .

Assumption 2

Anomaly 𝐴 can not be detected from data of channels other than 𝐶 .

Assumption 3

Fraction of weights of normal samples is at least 1/2.
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Discussion

Corollary 1

If an anomaly can be detected froma channel features, the channel data is anomalous.

'Theorem' 1

Under assumptions 1, 2 and 3 for all described above networks having enough degrees
of freedom and data samples for training
each subnetwork has high discriminative power against anomalies affecting its channel.
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Proof of the theorem
The idea of the 'proof' is to show that global minimum of loss function corresponds to the
state where each subnetwork 'reacts' only on anomalies affecting its channel.

› cross-entropy loss (1 - normal lumisections, 0 - anomaly);
› outputs 𝑓 𝑖

subnetwork of 𝑖-th subnetwork are bounded:

𝑓 𝑖
subnetwork ∈ (0, 1)

› activation function for the whole network:

𝑓network = 𝜙 (
4

∑
𝑖=1

𝑓 𝑖
subnetwork)

𝜙(𝑥) = exp(𝑥 − 4)
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Network diagram
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Proof of the theorem

› consider channel 𝑐 ∈ 𝒞:
› 𝒜𝑐 all anomalies that does affect 𝑐;
› ̄𝒜𝑐 all anomalies that does not affect 𝑐;

› relative to a subnetwork there are 3 cases:
› no anomalies;
› anomaly 'visible' from its channel (𝒜𝑐);
› anomalies 'invisible' from its channel ( ̄𝒜𝑐);

› with respect to these cases, loss of the whole network can be decomposed into:

ℒ = ℒnormal + ℒ ̄𝒜𝑐
+ ℒ𝒜𝑐
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Proof of the theorem

'Lemma' 1

Under assumptions 1, 2 and 3, and the theorem's conditions in case of anomaly from
𝒜𝑐 output of subnetworks corresponding to channel 𝑐 is as close to 0 (anomaly) as
possible.
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Proof of the theorem
› ℒ𝒜𝑐

and ℒnormal + ℒ ̄𝒜𝑐
can be optimized independently:

› since structure of subnetwork is sufficient to learn to separate these cases by
assumptions;

ℒ𝒜𝑐
= − ∑

𝑗
log[1 − exp(

4
∑
𝑖=1

𝑓 𝑖
subnetwork(𝑋𝑗) − 4)]

› where the first sum is over samples 𝑋𝑗 with anomalies from 𝒜𝑐;
› since subnetworks are independent:

› ℒ𝒜𝑐
is minimized when output of the subnetwork built on channel 𝑐 is as close

to 0 as possible.
› This proves 'Lemma' 1.
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Proof of the theorem
› subnetwork can not distinguish normal cases and ̄𝒜𝑐;
› nevertheless, since ̄𝒜𝑐 is still an anomaly, subnetwork receives punishment either
for:

› predicting low score for normal cases;
› predicting large score for cases from ̄𝒜𝑐.

› this may result in some bias relative to the presence of anomalies from 𝒜𝑐.

'Lemma' 2

Under assumptions and theorem 1 conditions, all subnetwork are unbiased, i.e. for
normal cases and anomalies from ̄𝒜𝑐 output of subnetwork for channel 𝑐 is close to
1.
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Proof of the theorem
Let 𝑋 be output of subnetwork for channel 𝑐 under normal cases and anomalies from

̄𝒜𝑐, 𝜖𝑖 and 𝜖′
𝑖 - sum of outputs from the rest of subnetworks, 𝛼 - fraction of good

lumisections, 𝛽 - fraction of anomalies from ̄𝒜𝑐:

ℒ = ℒnormal + ℒ ̄𝒜𝑐
+ ℒ𝒜𝑐

= − 𝛼
𝑛1

𝑛1

∑
𝑖=1

log exp (𝑋 + 𝜖′
𝑖 − 4)

− 𝛽
𝑛2

𝑛2

∑
𝑖=1

log (1 − exp (𝑋 + 𝜖𝑖 − 4))

+ ℒ𝒜𝑐
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Proof of the theorem

In the worst case scenario and by 'Lemma' 1 (at least one network reports anomaly with
score 𝛿 ≪ 1):

𝜖 < 2 + 𝛿
Solving for lower bound on optimal 𝑋:

𝜕ℒworst case
𝜕𝑋 = −𝛼 + 𝛽 exp(𝑋 + 𝛿 − 2)

1 − exp(𝑋 + 𝛿 − 2) = 0

⇒ 𝑋∗ = 2 − 𝛿 + log
𝛼

𝛼 + 𝛽
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Proof of the theorem
Dataset is reweighted so that 𝛼 = 1

2 . Thus, 𝛽 ∈ [0, 1
2 ].

𝑋 is restricted to be in range (0, 1), thus minimum of ℒ is achieved for 𝑋 as close to 1
as possible, hence subnetwork is unbiased.
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Proof of the theorem

To summarize, each subnetwork return score:

› close to 1 for normal lumisections;

› close to 1 for anomalies 'invisible' from subnetwork's channel;

› close to 0 for anomalies 'visible' from subnetwork's channel.

Thus, whole network 'decompose anomalies by channels'.
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Results
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Results
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Discussion

Results:

› scores are consistent with expert knowledge about detectors;

› scores from all methods (log.reg., min, fuzzyAND) are consistent with each other;

Discussion:

› assumption 1 might be hard to check in practice;

› assumption 2 is a reasonable by itself;

› assumption 3 can be artificially ensured (or even omitted).

https://github.com/yandexdataschool/cms-dqm/tree/master/notebooks 35



Summary



Summary

› the CMS experiment;

› solution for Data Quality expert assistance:
› up to 80% of saved manual labour;

› decomposition of anomalies by sources:
› scores are consistent with expert knowledge about detectors;

› work in progress for new data (2016).
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Bonus: rare anomalies



Upgraded detector

Suddenly:

› upgraded detector is much more robust;

› much less anomalies: around 1-2% of samples (against 1/3 before);
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Assumptions

Assumption 1

All normal samples are embedded into small region on a low-dimensional subspace.

Assumption 2

Every point outside this region is an anomaly.
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Rare anomalies

› technically, two-class problem;

› class disbalance may lead to poor models;

› assumption 2 allows to use one-class methods.

How can one-class methods be used in a classification problem?
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One-class objective trick
Consider classification problem of a class (𝒞) against noise (𝒩):

𝑃(𝒞 ∣ 𝑋) = 𝑃(𝑋 ∣ 𝒞)𝑃(𝒞)
𝑃(𝑋)

= 𝑃(𝑋 ∣ 𝒞)𝑃 (𝒞)
𝑃(𝑋 ∣ 𝒞)𝑃(𝒞) + 𝑃 (𝑋 ∣ 𝒩)𝑃(𝒩);

Since, 𝑃(𝑋 ∣ 𝒩) is known (𝑓(𝑋)) and 𝑃(𝒩) is controled (let it be 1/2):

𝑃(𝒞 ∣ 𝑋) = 𝑃(𝑋 ∣ 𝒞)
𝑃(𝑋 ∣ 𝒞) + 𝑓(𝑋);
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Mixed objective

ℒ =

− 1
2 𝔼

𝑋∼𝒞+
log 𝑓(𝑋) − 1 − 𝛼

2 𝔼
𝑋∼𝒞−

(1 − log 𝑓(𝑋)) − 𝛼
2 𝔼

𝑋∼𝒩
(1 − log 𝑓(𝑋)) =

1
2ℒ+ + 1 − 𝛼

2 ℒ− + 𝛼
2 ℒnoise

where:
› 𝒞+, 𝒞−, 𝒩 - positive, negative classes and noise;
› ℒ+, ℒ−, ℒnoise - losses on normal, anomalous and noise examples;
› 𝛼 - trade-off coefficient;
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Intuition

Consider border regions:

› in presence of negative samples nearby, produce solution as in classification
problem;

› otherwise, produce one-class like borders;

› ℒnoise can be viewed as a regularizer (restriction on possible solutions);
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Toy example
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Discussion

› noise injection into the middle of the net;

› AutoEncoder objective to prevent collapse of the code spaces.
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Net
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Results (preliminary)

Data from the previous studies:

› train/test:
› 10k/10k positive examples; 64/6.4k negative examples;

› 800 features;

ROC AUC (32 experiments):

› 0.85 ± 0.02 test;

› 0.80 ± 0.05 control.
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