
4th Tango Kernel Webinar
PyTango

Overview and how to contribute

23 June 2021
Anton Joubert - NRF/SARAO
Geoff Mant - STFC

Agenda

Introduction

Repository overview

Dependencies

How to: set up a dev environment, run the tests, add a new test

Architecture overview

Practical example: code navigation while reading an attribute

Useful tips

Contribution workflow

Questions

2

Introduction

Python library

Binding over the C++ tango library

... using boost-python (future: pybind11)

Does not use omniorb Python library

Relies on numpy

Multi OS: Linux, Windows, MacOS (sort-of)

Works on Python 2.7, 3.5+

3

Introduction

< 2003 ? Project started at SOLEIL
2005 Moved to ALBA. M. Taurel develops server.
2006 T. Coutinho main contributor.
2010 First package on pypi.org.
2012 High-level server API.
2013 Project moves with T. Coutinho to the ESRF.
2015 Included as Debian 8 package.
2016 PyTango 9 is released. V. Michel joins as maintainer.
2017 Welcome to Solaris.
2018 Welcome to SKA and institutes working on that project.

2019 A. Joubert joins as maintainer.

2021 Conda package on conda-forge (previously tango-controls).

* Welcome to all institutes, even if not mentioned! 4

Introduction

Original goal:

Provide a Python wrapper around the cppTango library

This resulted in the “low-level” Python API, closely matching cpp code.

Later:

Provide a Pythonic way of using Tango

This resulted in the “high-level” Python API, much nicer for Python programmers

5

Repository overview
Root has usual suspects: setup.py, CI yaml, license, etc.

Docker container for developers, editor configs, etc.

Cmake utilities (used for Windows compilation)

Sphinx docs

PyTango Extension Proposals (a bit like Python PEPs)

Various examples

C++ extension code

Python modules (used to be named PyTango)

Old Python-based DatabaseDS

Unit tests
6

Dependencies

OS dependencies:
libtango >= 9.3, and its dependencies: omniORB4 and libzmq
Boost.Python >= 1.33

Python dependencies:
numpy >= 1.1
six >= 1.10

Build dependencies:
Setuptools
Sphinx

Optional dependencies:
futures
gevent

7

How to set up a dev environment?
Clone the repo (or your fork)

git clone git@gitlab.com:tango-controls/pytango.git

Build a dev docker image in the .devcontainer folder (readme)

cd .devcontainer
export PYTHON_VERSION=3.8 TANGO_VERSION=9.3.4
docker build . -t pytango-dev:py${PYTHON_VERSION}-tango${TANGO_VERSION} \
 --build-arg PYTHON_VERSION --build-arg TANGO_VERSION

Run docker container, bind mount your source as a volume

docker run -it --rm --name pytango-dev -v ~/tango-src/pytango:/opt/pytango \
 pytango-dev:py3.8-tango9.3.4 /bin/bash

Inside the container build the extension, optionally run tests

cd /opt/pytango
python setup.py build
python setup.py test 8

https://gitlab.com/tango-controls/pytango/-/blob/develop/.devcontainer/README.md

How to set up a dev environment?

If you want to run PyTango scripts, pytest, or use from a Python session:

Configure your IDE:

PyCharm (professional)
VS Code (remote containers extension)

Details in the readme

cd /opt/pytango
pip install -e .

9

https://gitlab.com/tango-controls/pytango/-/tree/develop/.devcontainer#using-a-container-with-an-ide

How to set up a dev environment?

Running the example Clock device server in the container

10

Two of these means cppTango debug compilation

How to set up a dev environment?

Connect to the example Clock device from another container shell

11

How to run the tests?

Run full test suite (pip install required)

pytest

Run a single test

pytest -k test_async_command_polled[int]

Run a test and enter PDB on the first failure

pytest -k test_async_command_polled[int] --pdb

12

How to run the tests?

If running individual tests from PyCharm we need to
edit setup.cfg:

remove tests from pytest options, so not
all tests are run.

The --boxed option runs each test in a new process
as the DeviceTestContext can only be used once

Note: the --boxed option is not supported on Windows

13

How to add a new test?

pytest setup

command_inout_asynch tests

DeviceProxy tests (mostly using TangoTest device)

Event subscription tests

Device tests

DeviceTestContext tests

Pick the right file, or add a new one (test_something.py)

14

How to add a new test?

Find a similar test and copy the pattern (keep related tests together)

Use existing fixtures to cover many variants easily

15

Architecture overview

16

17

18

Practical example: Code navigation.

What happens when an attribute is read?

Client side: DeviceProxy

Server side: Device

19

Useful tips - compiling the extension

Compiling the extension

C++ files in ext/ create _tango shared library
 Example: build/lib.linux-x86_64-3.8/tango/_tango.cpython-38-x86_64-linux-gnu.so

Triggered by python setup.py build , pip install , etc.

Environments vars used by compilation (in setup.py):
TANGO_ROOT, OMNI_ROOT, ZMQ_ROOT, BOOST_ROOT

Point to installation folders of these packages, e.g., we use $CONDA_PREFIX in CI.

Boost can be tweaked more: BOOST_HEADERS, BOOST_LIBRARIES, BOOST_PYTHON_LIB

20

https://gitlab.com/tango-controls/pytango/-/blob/e4a60126c4cc8502219b20354d7a62a5b88a43c6/setup.py#L483-486

Useful tips - compilation shortcuts

If the ext/ files haven’t changed, and _tango file exists can skip compilation:

touch build/lib.linux-x86_64-3.8/tango/_tango.cpython-38-x86_64-linux-gnu.so

Makefile? Not used. Is it up to date? Is being used for pybind11 work.

If working on .cpp file in the extension code,
full compilation is slow. Shortcut:

Compile the single .cpp file
Use command from previous build
Specify .cpp file after the -c option
Add -o with name of .o file.

Link the _tango file again

21

Useful tips - crash reports

22

Run a new Docker image (or from your own environment)

docker run --rm -ti -v $PWD:/opt/pytango continuumio/miniconda3:4.9.2 bash

Install PyTango, cppTango+debug symbols, GDB (if necessary)

conda create --yes --name env --python=3.8 && conda activate env
conda install -c conda-forge pytango cpptango-dbg
apt update && apt install gdb

Run the script that crashes through GDB

gdb --args python /opt/pytango/my_script.py
(gdb) run
...
Thread 1 "python" received signal SIGSEGV, Segmentation fault.
0x00007f97c550cb78 in Tango::EventConsumer::unsubscribe_event
(this=0x56450a640a20, event_id=1)
 at /usr/local/src/conda/cpptango-9.3.4/cppapi/client/event.cpp:2028
(gdb) bt

Contribution workflow

* develop branch to be renamed main, to match cpptango
Diagram credit:
https://github.com/sardana-org/sardana-training/tree/master/developers

fork develop*

create MR

Discuss and commit changes on MR

commit changes to MR check and propose
changesautomated tests

merge MR to develop*

Discuss ideas in GitLab issues

23

contributors maintainers

https://github.com/sardana-org/sardana-training/tree/master/developers

Contribution workflow

More details in the online docs:

https://pytango.readthedocs.io/en/stable/how-to-contribute.html

24

https://pytango.readthedocs.io/en/stable/how-to-contribute.html

Thank you!

Any questions?

https://gitlab.com/tango-controls/pytango 25

https://gitlab.com/tango-controls/pytango

