

HOW CASSANDRA IMPROVES PERFORMANCES AND AVAILABILITY

OF HDB++ TANGO ARCHIVING SYSTEM

R. Bourtembourg, J.L. Pons, P. Verdier, ESRF, Grenoble, France

Abstract
The TANGO release 8 led to several enhancements,

including the adoption of the ZeroMQ library for faster
and lightweight event-driven communication. Exploiting
these improved capabilities, a high performance, event-
driven archiving system, named Tango HDB++, has been
developed. Its design gives the possibility to store
archiving data into Apache Cassandra: a high
performance scalable NoSQL distributed database,
providing High Availability service and replication, with
no single point of failure. HDB++ with Cassandra will
open up new perspectives for TANGO in the era of big
data and will be the starting point of new big data
analytics/data mining applications, breaking the limits of
the archiving systems which are based on traditional
relational databases. The paper describes the current state
of the implementation and our experience with Apache
Cassandra in the scope of the Tango HDB++ project. It
also gives some performance figures and use cases where
using Cassandra with Tango HDB++ is a good fit.

INTRODUCTION

The TANGO archiving system is a tool allowing
TANGO users to store the readings coming from a
TANGO based control system into a database. The
archived data are essential for the day by day operation of
complex scientific facilities. They can be used for long
term monitoring of subsystems, statistics, parameters
correlation or comparison of operating setups over time.

To take advantage of the fast and lightweight event-
driven communication provided by TANGO release 8 [1]
with the adoption of ZeroMQ [2], a novel archiving
system for the TANGO Controls framework [3], named
HDB++ [4], has been designed and developed, resulting
from a collaboration between Elettra and ESRF.

HDB++ design allows TANGO users to store data with
microsecond timestamp resolution into traditional
database management systems such as MySQL [5] or into
NoSQL databases such as Apache Cassandra [6].

APACHE CASSANDRA

Apache Cassandra is an open source distributed
database management system available under the Apache
2.0 license. Cassandra’s masterless ring architecture
where all nodes play an identical role, is capable of
offering true continuous availability with no single point
of failure, fast linear scale performance and native multi-
datacentre replication. All these advantages over the
traditional relational databases made Cassandra a very
good candidate to store the historical data coming from
the ESRF TANGO control systems.

HDB++ DESIGN

HDB++ is a novel TANGO Controls archiving system.
Its architecture is mainly based on the two following
Device Servers and takes advantage of the TANGO
events mechanism:  The Event Subscriber Device Server subscribes to

TANGO archive events, which are ZeroMQ events in
the latest TANGO releases, and stores the received
events in the historical database. It provides
diagnostics data as well.  The Configuration Manager Device Server
configures the attributes to be archived and defines
which Event Subscriber is responsible for a set of
TANGO attributes to be archived. It provides
diagnostics data as well.

An abstraction library named libhdb++ decouples the
interface to the database back-end from the
implementation.

To be able to store data into Apache Cassandra, a C++
library named libhdb++cassandra, implementing the
methods from the libhdb++ abstract layer for Cassandra,
has been developed at the ESRF. It was inspired by the
work done by Elettra who implemented the HDB++
MySQL back-end support shared library. The HDB++
Device Servers design is shown in Fig. 1.

Figure 1: HDB++ Device Servers design.

The Cassandra HDB++ libraries allow us to reuse the
Event Subscriber and Configuration Manager Device
Servers as well as the Graphical User Interfaces (GUI)
interacting with these Device Servers (HDB++
Configurator GUI shown on Fig. 2 and HDB++
Diagnostics GUI), without changing their source code.
Linking the two Device Servers with libhdb++cassandra
was sufficient to be able to store data into Cassandra.

For the data extraction part, new Java classes were
developed for HDB++ Cassandra, extending the features
provided by an abstract layer hiding the database back-

end to the Java applications.

Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015 11:00 WEM310

Data Management, Analytics & Visualisation
ISBN 978-3-95450-148-9

1 Co
py

rig
ht

©
20

15
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs
Pr

e-
Pr

es
sR

ele
as

e2
3-

O
ct

-2
01

5
11

:0
0

A Java GUI named HDB++ Viewer (Fig. 3) was
developed, using these Java classes, to visualize the data
stored in the historical database.

The GUI can be configured to read data from HDB++
Cassandra, from HDB++ MySQL or from the ESRF
Oracle old Historical Database.

Figure 2: HDB++ Configurator GUI.

Figure 3: HDB++ Viewer GUI showing the biggest events
peak (762 events/s) observed in 2015.

The HDB++ Cassandra Java classes are retrieving the
data directly from the Cassandra cluster and are written in
a way to take advantage of the replication. A data request
is split into several smaller requests to ensure each query
targets one and only one Cassandra partition to maximize
performances. The requests are sent asynchronously and
in parallel, taking advantage of the fact that the data is
distributed over several Cassandra nodes. The data model
has been designed in such way that there is one partition
per attribute per period of time. This period of time is
adjustable in the Event Subscriber Device Server code
and is currently set to one day. In the future, this period
will be set to one hour, meaning one partition will contain
one hour of data of a specific attribute.

A C++ extraction library for HDB++ Cassandra will be
implemented soon, inheriting from the C++ HDB++
abstract extraction library already developed by Elettra.

THE CASSANDRA EXPERIENCE

The Cassandra basics were learnt very quickly thanks
to the numerous tutorial online videos and to the Datastax
academy web site [7].

Since the Event Subscriber and Configuration Manager

Device Servers were written in C++, the

libhdb++cassandra library described above had to be

implemented in C++. To do this, it was necessary to use

the Cassandra C++ driver, which was still in Beta version

at that time. The Cassandra C++ driver appeared to be

stable for our usage. The version 2.0.1 of the driver,

which provides useful features like latency-aware routing,

is currently in use. Newer versions, which will be used

soon, are providing retry policies, making the code

simpler and more robust to failures.

After a few tests archiving a few attributes, it was
decided early in the project to store real data coming from
the accelerator control system. So the system was
configured to archive all the accelerator control system
TANGO attributes which were already being archived in
the old HDB ESRF database. The HDB++ Configuration
GUI (Fig. 2), really helped to simplify this task.

Following the Apache Cassandra website advices, the
project was started with Cassandra 2.1.0, with 3 recycled
servers (See Table 1). The problem is that useful data was
stored almost from the start of the project and Cassandra
2.1.x branch appeared to be a development branch with
some remaining bugs so an upgrade was necessary each
time a new version was released until version 2.1.7. The
bugs didn’t cause any loss of data. The most annoying
bug was CASSANDRA-8321 [8] which was filling up the
disks with temporary files not removed after use. A cron
job had to be created in order to remove the oldest of
these temporary files until a new version fixing the bug
was released. The upgrade was always smooth with no
downtime of the HDB++ system. To upgrade a Cassandra
cluster, one needs to do a rolling upgrade, meaning each
node is upgraded one after the other so there is always
only one node down at a given moment. Missing data is
then streamed by the other nodes once the node is back
online thanks to Cassandra consistency repair features [9].

Table 1: Recycled Servers’ Specifications

Item Description

CPU
Intel Xeon E5440, 2.83GHz, 4 cores, 2

CPUs

Memory 48 GB

OS Debian 7 (Wheezy) - 64 bits

Storage 1
(OS) SAS 10K RPM 2x72 GB – RAID 1

Storage 2

(Data)
SAS 10K RPM 2x146 GB - RAID 0

SAS 10K RPM 1x146 GB

Network 1 Gb Ethernet x 1 port

WEM310 Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015 11:00

ISBN 978-3-95450-148-9
2Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Pr
e-

Pr
es

sR
ele

as
e2

3-
O

ct
-2

01
5

11
:0

0

Data Management, Analytics & Visualisation

Data Model
The schema and tables names were inspired by the

HDB++ MySQL tables.

Cassandra provides very high performances but in
order to maintain these performances, some operations
which are allowed in traditional relational databases are
forbidden in Cassandra, like the JOIN queries for instance
or SELECT queries with a WHERE clause not containing
the partition key. For this reason, it was not possible to
reuse directly the same database schema as the one
created for the HDB++ MySQL version and some
additional tables had to be created to overcome this
difficulty. Cassandra Query Language collection types
were also used to store the Tango array types.

Partition keys

The partition key is a part of the primary key which
will be used by Cassandra to decide on what nodes data
having a primary key containing this partition key will be
stored. It was decided to use the HDB++ attribute
configuration ID and a text field named period as
partition key for all the tables storing historical values. At
the beginning, the name of the current month was used for
this period field (e.g. “2015-10”). The partition sizes were

too big and this was degrading the performances, causing

long garbage collector pauses when users were requesting

a full month of data for an attribute, making a Cassandra

node unresponsive during the garbage collection process

period, which could last for more than one minute

sometimes. It was decided to insert the current day in the

period field to reduce the partitions sizes. This improved

the performances but is still not perfect. This is why one

partition per attribute and per hour will be created in the

future (and the already stored data will be migrated) to

keep the partition sizes below 100MB, following the

Cassandra experts’ recommendations.

Cassandra Administration

At the ESRF, Datastax OpsCenter Community Edition,

shown in Fig. 4, is used to monitor the Cassandra cluster.

OpsCenter is a web-based visual monitoring tool for

Apache Cassandra.

CURRENT STATUS

The HDB++ Cassandra version at the ESRF is

currently storing data coming from about 7440 TANGO

attributes managed by 34 Event Subscriber Device Server

instances. The maximum number of attributes managed

by a single Event Subscriber at the ESRF is currently 940.

The Figure 5 is showing the attributes distribution

among the Event Subscriber instances as well as the

number of received events per event subscriber during a

period of about 1 day 1 hour and 20 minutes, on 12 -13

October 2015. The maximum number of events received

for a single event subscriber during that period was a bit

more than 1.5 million on that typical day.

Figure 5: Distribution window from the HDB++

diagnostics GUI.

The Cassandra cluster is currently composed of 3 nodes

running Cassandra 2.1.7. The average data size per node

is about 162GB. The recycled servers described in Table

1 are still used for the moment.

The architecture of the HDB++ Cassandra system at the

ESRF is described in Fig. 6 as well as the future evolution

of the cluster.

FUTURE PLAN

New Nodes

3 new servers have been bought and will be replacing

soon the 3 current nodes after having upgraded Cassandra

to the latest stable version (probably 2.1.10).

Analytics Datacentre

3 additional servers with SSD disks have been bought

to constitute a new datacentre dedicated to analytics.

They will be located in a different room than the

production datacentre for a better protection of the data,

in case of fire for instance. The specifications of all these

new servers are described in Table 2.

Figure 4: Datastax OpsCenter monitoring tool showing

HDB++ Cassandra cluster status at the ESRF.

Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015 11:00 WEM310

Data Management, Analytics & Visualisation
ISBN 978-3-95450-148-9

3 Co
py

rig
ht

©
20

15
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs
Pr

e-
Pr

es
sR

ele
as

e2
3-

O
ct

-2
01

5
11

:0
0

Figure 6: HDB++ Cassandra system architecture at the ESRF and future evolution.

Table 2: New Servers’ Specifications

Item Production DC Analytics DC

CPU

Intel Xeon
E5-2630,

2.4GHz, 8 cores

Intel Xeon
E5-2630, 2.4GHz,
8 cores, 2 CPUs

Memory 64 GB 128 GB

OS Debian 7 (Wheezy) - 64 bits

Storage 1

(OS) SAS 15K RPM 300GB x2 – RAID 1

Storage 2

(data
directories)

1x 1TB, SATA,
7200 RPM

1x 2TB NL-

SAS 7200 RPM

SSD SATA MLC

800GBx4

Network 1 Gb Ethernet x 4 ports

Apache Spark [10] will be installed on the Analytics

datacentre Cassandra nodes. It will be used to compute

statistics (minimum, maximum, average, received events

count, errors count) per attribute and will compute

decimation data which will be inserted into new

Cassandra tables from a new keyspace dedicated to

analytics data.

The HDB++ Viewer tool will be improved in order to

return decimated data and statistics first when a user will

want to retrieve a big amount of data. That way, the user

will get quickly an overview of the data and might be able

to narrow down the region of interest by zooming in and

reducing the time interval. At some point, once the

amount of data to retrieve will be below a reasonable

number (to be defined), the user will see the real data.

CONCLUSION

HDB++ Cassandra proved it can replace the old ESRF

Historical Database. It demonstrated it is easy to develop

additional database back-end support for HDB++.

It might also become a good alternative to the current

TANGO Temporary Database (TDB).

Apache Cassandra proved it is able to deliver

continuous availability as long as the partitions sizes stay

small to avoid long garbage collector cycles.

Using Apache Cassandra as HDB++ database back-end

is a good fit for projects requiring big storage capacities

and continuous availability, as well as for projects where

more storage capacities and performances might be

needed in the future, like at the ESRF for instance with

the coming upgrade of the accelerator. For smaller

projects, the HDB++ MySQL version is enough and

cheaper because less servers are needed.

The analytics cluster using Apache Spark should allow

to bring better user experience and read performances

thanks to the new decimation tables and SSD disks.

ACKNOWLEDGMENT

The Elettra HDB++ team for their work on the HDB++

project and for their open mind.

DuyHai Doan, technical advocate at Datastax, for his

advices and Cassandra expertise.

REFERENCES

[1] A. Götz et al., “TANGO V8 – Another turbo charged

major release”, ICALEPCS’13, San Francisco, USA
(2013), http://jacow.org

[2] ZeroMQ: http://zeromq.org

[3] TANGO Controls: http://www.tango-controls.org

[4] L. Pivetta et al., “HDB++: A New Archiving System
for TANGO”, These Proceedings, WED3O04,

ICALEPCS’15, Melbourne, Australia (2015).

[5] MySQL: http://dev.mysql.com

[6] Apache Cassandra: http://cassandra.apache.org

[7] Datastax Academy: https://academy.datastax.com

[8] CASSANDRA-8321 bug:

https://issues.apache.org/jira/browse/ CASSANDRA-

8321

[9] Cassandra consistency repair features:

 http://docs.datastax.com/en/cassandra/2.1/cassandra/

dml/dmlConsistencyRepair.html

[10] Apache Spark: https://spark.apache.org

WEM310 Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015 11:00

ISBN 978-3-95450-148-9
4Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Pr
e-

Pr
es

sR
ele

as
e2

3-
O

ct
-2

01
5

11
:0

0

Data Management, Analytics & Visualisation

